
VulPA: Detecting Semantically Recurring Vulnerabilities with
Multi-object Typestate Analysis
LIQING CAO, Institute of Computing Technology, CAS, China and University of Chinese Academy of
Sciences, China
HAOFENG LI

∗
, Institute of Computing Technology, CAS, China

CHENGHANG SHI, Institute of Computing Technology, CAS, China and University of Chinese Academy
of Sciences, China
JIE LU, Institute of Computing Technology, CAS, China
HAINING MENG, Institute of Computing Technology, CAS, China and University of Chinese Academy of
Sciences, China
LIAN LI

∗
, Institute of Computing Technology, CAS, China, University of Chinese Academy of Sciences,

China, and Zhongguancun Laboratory, China
JINGLING XUE, University of New South Wales, Australia

Detecting semantically recurring vulnerabilities with similar root causes remains a challenge due to the
complex interactions between multiple variables. This paper introduces VulPA, a novel approach for precisely
identifying such vulnerabilities through complex inter-procedural data and control flows across multiple
objects. VulPA tackles this challenge in two steps: 1) Defining root causes with a Vulnerability Pattern
Description Language (VPDL) that specifies variable relations and bug-triggering operations, and 2) Detecting
these patterns using an inter-procedural multi-object analysis that tracks dataflows and variable interactions.
Built on the Heros IFDS framework, VulPA was evaluated on 26 Java applications using rules from 34 CVEs.
It identified 90 new vulnerabilities (23.7% false positive rate), outperforming existing tools (ReDeBug, VUDDY,
SourcererCC, PHunter, PPT4J, FlowDroid, and IDE𝑎𝑙), which collectively found only 13. VulPA effectively
uncovers complex vulnerabilities missed by state-of-the-art tools.

CCS Concepts: • Theory of computation→ Program analysis.

Additional Key Words and Phrases: Recurring vulnerability, Temporal logic, IFDS

ACM Reference Format:

Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue. 2025. VulPA:
Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis. Proc. ACM Softw. Eng.

2, FSE, Article FSE108 (July 2025), 24 pages. https://doi.org/10.1145/3729378

∗Corresponding author

Authors’ Contact Information: Liqing Cao, SKLP, Institute of Computing Technology, CAS, Beijing, China and University of
Chinese Academy of Sciences, Beijing, China, caoliqing19s@ict.ac.cn; Haofeng Li, SKLP, Institute of Computing Technology,
CAS, Beijing, China, lihaofeng@ict.ac.cn; Chenghang Shi, SKLP, Institute of Computing Technology, CAS, Beijing, China
and University of Chinese Academy of Sciences, Beijing, China, shichenghang21s@ict.ac.cn; Jie Lu, SKLP, Institute of
Computing Technology, CAS, Beijing, China, lujie@ict.ac.cn; Haining Meng, SKLP, Institute of Computing Technology,
CAS, Beijing, China and University of Chinese Academy of Sciences, Beijing, China, menghaining@ict.ac.cn; Lian Li, SKLP,
Institute of Computing Technology, CAS, Beijing, China and University of Chinese Academy of Sciences, Beijing, China
and Zhongguancun Laboratory, Beijing, China, lianli@ict.ac.cn; Jingling Xue, University of New South Wales, Sydney,
Australia, j.xue@unsw.edu.au.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTFSE108
https://doi.org/10.1145/3729378

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

HTTPS://ORCID.ORG/0009-0008-8023-7150
HTTPS://ORCID.ORG/0009-0008-0931-8767
HTTPS://ORCID.ORG/0009-0003-3055-8929
HTTPS://ORCID.ORG/0000-0002-4162-0404
HTTPS://ORCID.ORG/0009-0008-7149-7671
HTTPS://ORCID.ORG/0000-0002-4476-0541
HTTPS://ORCID.ORG/0000-0003-0380-3506
https://doi.org/10.1145/3729378
https://orcid.org/0009-0008-8023-7150
https://orcid.org/0009-0008-0931-8767
https://orcid.org/0009-0003-3055-8929
https://orcid.org/0000-0002-4162-0404
https://orcid.org/0009-0008-7149-7671
https://orcid.org/0000-0002-4476-0541
https://orcid.org/0000-0003-0380-3506
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729378
https://www.acm.org/publications/policies/artifact-review-and-badging-current

FSE108:2 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

1 Introduction
Recurring vulnerabilities are prevalent in real-world systems [Kim and Lee 2018; Liu et al. 2020].
A recent Google report revealed that 6 out of 24 0-day vulnerabilities in 2020 were variants
of existing ones [Zero 2021]. These vulnerabilities can recur either syntactically, due to code
reuse, or semantically, from common misconceptions in implementing similar code logic [Pham
et al. 2010], such as misuse of common APIs. While syntactic recurring vulnerabilities are often
detectable through code similarity analysis [Jang et al. 2012; Kim et al. 2017], detecting semantically
recurring vulnerabilities is more challenging and requires precise root cause analysis. Despite
recent advancements [Jang et al. 2012; Kang et al. 2022; Kim et al. 2017; Shi et al. 2024; Xiao et al.
2020], many recurring vulnerabilities remain undetected.

Problem Statement. This paper tackles the challenge of identifying recurring vulnerabilities with
similar root causes and detecting them precisely while maintaining a low false positive rate.
To illustrate the challenge of detecting semantically recurring vulnerabilities, consider CVE-

2022-41936 from Xwiki, shown in Figure 1. This vulnerability allows unauthorized users to access
sensitive information (such as hidden pages) through the public REST API getModifications().
The vulnerability stems from the lack of an access control check before executing the sensitive
createHistorySummary operation on wiki, spaces, and page. The remediation (lines 3-5 and 7)
shows how these variables are linked to docRef through the getPageId and resolve methods
(lines 3-4). The docRef variable is then validated using the hasAccess method (line 5) to ensure
the necessary permissions before performing the sensitive operation (line 6).

To detect CVE-2022-41936 and similar vulnerabilities, it is essential to capture the relationships
between these variables and track their data flows. The vulnerability occurs if wiki can reach
the createHistorySummary operation without the docRef validation, which is derived from wiki,
spaces, and page via the getPageId and resolvemethods. Failure to track these relations precisely
may lead to missing the vulnerability or generating numerous false positives. The core challenge is:
how can we accurately capture these variable relationships to detect the vulnerability?

1 public History getModifications(String wiki) {

2 . . .

3 + String pageId = Utils.getPageId(wiki, spaces, page);

4 + DocRef docRef = resolver.resolve(pageId);

5 + if (authManager.hasAccess(docRef)) {

6 Factory.createHistorySummary(wiki, spaces, page);

7 + }

Fig. 1. A simplified code snippet for CVE-2022-41936.

PriorWork. Existing approaches struggle to detect semantically recurring vulnerabilities like CVE-
2022-41936 (Figure 1). Signature-basedmethods [Jang et al. 2012; Kim et al. 2017; Xiao et al. 2020] rely
on syntactic or pattern-based similarities but fail to track data flows, missing vulnerabilities that are
structurally different yet semantically similar. Static analysis tools, including taint analysis [Arzt
et al. 2014; He et al. 2019; Li et al. 2015; Wang et al. 2023] and typestate analysis [Fink et al.
2008; Hallem et al. 2002; Li et al. 2022; Späth et al. 2017], primarily focus on individual objects,
overlooking interactions between multiple variables—such as calling hasAccess(docRef) before
invoking createHistorySummary(wiki,spaces,page). Although multi-object typestate analysis
has been proposed in [Naeem and Lhotak 2008], it relies on a complex automaton as input and is not
publicly available. As a result, two vulnerabilities similar to CVE-2022-41936 remained undetected
for 630 days until our discovery.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:3

In practice, such vulnerabilities often involve complex inter-procedural control and data flows
across variables, complicating detection. This raises a critical question: how can we effectively

identify the nuanced characteristics of semantically recurring vulnerability patterns?

This Work. We address this challenge with a novel two-step approach:
• Specifying Vulnerability Patterns.We have developed a domain-specific language, Vul-
nerability Pattern Description Language (VPDL), to describe vulnerability root causes. VPDL
defines a vulnerable trace, outlining variable relations and key bug-triggering operations.
With a straightforward syntax, VPDL uses variables and code-like statements, making it
accessible for application developers without requiring program analysis expertise.

• Detecting VPDL Patterns.A vulnerability is detected when a program path matches a VPDL
pattern. This is achieved through an IFDS (Inter-procedural, Finite, Distributive, Subset)-
based multi-object typestate analysis [Naeem and Lhotak 2008], which tracks dataflows and
interactions across multiple variables. The VPDL specification is first translated into linear
temporal logic (LTL) formulas with free VPDL variables. These formulas are then converted
into Büchi automata and solved using an IFDS-based algorithm, which processes automaton
state transitions alongside variable bindings. A vulnerability is flagged when a program path
reaches a vulnerable state with valid bindings.

We have developed VulPA, a recurring vulnerability detection tool, and evaluated it on 34 CVEs
(covering 63 vulnerabilities) across 26 Java applications. VulPA has successfully detected all 63
known vulnerabilities and identified 90 new ones, achieving a 23.7% false positive rate. In contrast,
existing static analysis tools (ReDeBug, VUDDY, SourcererCC, PHunter, PPT4J, FlowDroid,
and IDE𝑎𝑙) collectively detected only 13 new vulnerabilities.

Contributions. This paper makes the following key contributions:
• We design VPDL, a domain-specific language for describing semantically recurring vulnera-
bility patterns with complex control and data dependencies across multiple objects.

• We develop a novel IFDS-based algorithm that simultaneously handles automaton state tran-
sitions and multi-variable data dependencies, enabling precise detection of VPDL-specified
patterns.

• We implement VulPA and evaluate it on 63 real-world vulnerabilities across 26 Java appli-
cations, identifying 90 new vulnerabilities, with majority of them undetectable by existing
tools.

The rest of the paper is structured as follows. Section 2 presents an overview of VulPA. Section 3
formally describes the VPDL language, and Section 4 elaborates on our IFDS-based vulnerability
detection algorithm. Section 5 evaluates the effectiveness of our approach on real-world vulnerability
cases. Section 6 discusses related work, and Section 7 concludes the paper.

2 The VulPA Approach
Figure 2 shows the high-level architecture of VulPA, which detects recurring vulnerabilities in
two steps. First, the root cause of an existing vulnerability is specified as a VPDL pattern. Second,
new recurring vulnerabilities are reported by matching program paths to the VPDL pattern in the
analyzed programs.

2.1 Specifying Vulnerability Patterns in VPDL
We design the Vulnerability Pattern Description Language (VPDL) to precisely express vulnerability
root causes. Inspired by languages like SmPL [Padioleau et al. 2007] and Metal [Hallem et al. 2002],
VPDL features a Java-like syntax. Figure 3 shows the VPDL specification for the CVE-2022-41936

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

FSE108:4 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

Known
Vulnerabilities

Step 1: Specify vulnerability patterns

VPDL rules
Rule

parser LTL
formulas

Formula
converter

Automata
IFDS

solver

Alias
analysis

Reports

Step 2: Detect VPDL patterns

Fig. 2. The high level architecture of VulPA.

1 @CVE-2022-41936@

2 Variable wiki, spaces, page, pageId, docRef;

3 @@

4 not {

5 pageId = Utils.getPageId(wiki, spaces, page);

6 docRef = Resolver.resolve(pageId);

7 AuthManager.hasAccess(docRef);

8 }

9 Factory.createHistorySummary(wiki, spaces, page);

Fig. 3. VPDL for CVE-2022-41936.

1 public History getPageHistory(String wikiName,
String spaceName, String pageName) {

2 List<String> spaces = parseSpaceSegments(spaceName);

3 . . .

4 for (Object object : queryResult) {

5 . . .

6 HistorySummary historySummary = Factory
.createHistorySummary(wikiName, spaces, pageName);

7 . . .

Fig. 4. Simplified code snippet containing a new vulnera-

bility in PageHistoryResourceImpl.java.

example in Figure 1. The description begins with a header enclosed by “@” symbols, annotating
its name. The body is divided into two sections by the “@@” delimiter. The first section declares
free variables to be mapped to program variables during detection. The second section describes a
vulnerability-triggering trace, including statements that capture variable relations (lines 5–6) and
bug-triggering operations (line 9). The “not{...}” clause excludes the enclosed statement sequence
from the trace. Thus, Figure 3 precisely captures the root cause of CVE-2022-41936: the invocation
of createHistorySummary() (line 9) occurs without the required access control checks (lines 5–7).

VPDL specifications are parsed by the VPDL parser and translated into LTL formulas with free
variables, which are checked in the next step. Manually deriving VPDL specifications involves
understanding vulnerability root causes and patches, akin to defining sources, sinks, and sanitizers
in classic taint analysis. In our experience, writing a VPDL specification for an existing vulnerability
takes less than 10 minutes, assuming familiarity with vulnerability patterns.

This paper does not explore automatic generation of VPDL specifications. Automatically learning
VPDL specifications remains a promising direction for future work.

2.2 Detecting VPDL Patterns
We report vulnerabilities by identifying program paths that match a VPDL pattern, specifically
paths satisfying the LTL formulas derived from the pattern. Figure 4 shows a new vulnerability
in Xwiki, where the path from line 1 to line 6 matches the VPDL pattern in Figure 3. This path
propagates wikiName to createHistorySummary() without the required access control checks

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:5

(matching the not clause in Figure 3). Here, the VPDL variables 𝑤𝑖𝑘𝑖 , 𝑠𝑝𝑎𝑐𝑒𝑠 , and 𝑝𝑎𝑔𝑒 map to
program variables wikiName, spaces, and pageName, respectively.

Revisiting the code snippet in Figure 1, the patch fixes CVE-2022-41936, as it no longer satisfies
the not clause in Figure 3 and thus does not match the VPDL pattern. However, changing wiki in
line 3 to wiki1 restores satisfaction of the not clause, as the VPDL variable 𝑤𝑖𝑘𝑖 cannot bind to
two distinct, non-aliasing variables. This will result in a vulnerability being reported.
As noted in previous work [Beyer et al. 2018; Schmidt 1998], model checking of LTL formulas

can be viewed as a dataflow analysis problem. In VulPA, LTL formulas are solved using a dataflow
analysis implemented in the IFDS framework [Heros 2023; Reps et al. 1995]. First, the LTL formulas
of a VPDL pattern are converted into Büchi automata [Duret-Lutz et al. 2022b; Vardi and Wolper
1986]. An IFDS-based algorithm, proposed in this paper, then computes automaton states while
mapping VPDL variables to program variables at each program point. The mapping is updated
during dataflow analysis when assigning one mapped program variable to another, with aliases
managed by the alias analysis module. A vulnerability is reported if an accepted automaton state is
reached with valid VPDL variable mappings.

3 The VPDL Language
We introduce the syntax and semantics of VPDL, followed by an illustrative example.

3.1 Syntax
The simplified syntax of VPDL is formally defined as follows:

𝑃 ::= @ 𝑛𝑎𝑚𝑒 @ 𝑉 @@ 𝑆

𝑉 ::= 𝑇 𝑥

𝑇 ::= 𝑡 | Variable | Method | ...
𝑆 ::= 𝑝 (𝑥) | {𝑆} and {𝑆}| {𝑆} or {𝑆} | not {𝑆}
Identifiers 𝑛𝑎𝑚𝑒, 𝑡, 𝑥, 𝑝

(1)

A vulnerability pattern description 𝑃 starts with the “@ name @” construct, denoting its name,
followed by a set of variables 𝑉 and a sequence of statements 𝑆 . A variable 𝑥 is qualified by type 𝑇 ,
which can be an identifier 𝑡 representing a Java type (e.g., String), indicating that 𝑥 can be any
variable of type 𝑡 in the Java programs under analysis. Alternatively, it can be a keyword (Variable,
Method, . . .) referring to a specific program element. For example, the declaration “Variable𝑤𝑖𝑘𝑖”
(line 2 in Figure 3) indicates that𝑤𝑖𝑘𝑖 can be any variable in the target Java program.

A VPDL statement 𝑆 can be either a predicate 𝑝 (𝑥) or a logical operation (and, or, or not) on
sequences of VPDL statements 𝑆 . Specifically, the predicate 𝑝 (𝑥) defines the code patterns to be
matched, with 𝑥 representing a set of declared VPDL variables.

3.2 Semantics
A VPDL specification defines a sequence of statements 𝑆 to be matched in order along a program
path. Each atomic proposition 𝑝 (𝑥) ∈ 𝑆 matches a program statement 𝑝 (𝑣), where the VPDL
variable 𝑥 is bound to the program variable 𝑣 . A VPDL variable cannot be bound to distinct non-
aliasing variables, and paths with invalid bindings are discarded. The logical operators “𝑆 or 𝑆”, “𝑆
and 𝑆”, and “not 𝑆” create complex path constraints: “𝑆 or 𝑆” requires at least one of two sequences
to match, “𝑆 and 𝑆” requires both to match, and “not 𝑆” ensures the sequence does not match.

3.2.1 Linear Temporal Logic. We formally define the semantics of VPDL in linear temporal logic
(LTL), where time is modeled as a sequence of states and connectives refer to the future [Huth and
Ryan 2004]. To enhance LTL’s expressive power, we adopt existing approaches [Bustan et al. 2005;

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

FSE108:6 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

T (𝑉 @@ 𝑆) = 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 𝐹 𝐶J𝑆K 𝑡𝑟𝑢𝑒
𝐶J𝑆 𝑆K 𝑎 = 𝐶J𝑆K(𝐶J𝑆K 𝑎)

𝐶J𝑝 (𝑥)K 𝑎 = 𝑝 (𝑥) ∧ 𝑋 𝐹 𝑎

𝐶J{𝑆1} or {𝑆2}K 𝑎 = (𝐶J𝑆1K 𝑎) ∨ (𝐶J𝑆2K 𝑎)
𝐶J{𝑆1} and {𝑆2}K 𝑎 = (𝐶J𝑆1K 𝑎) ∧ (𝐶J𝑆2K 𝑎)

𝐶Jnot{𝑆}K 𝑎 = 𝑁 J𝑆K 𝑎
𝑁 J𝑆 𝑆K 𝑎 = 𝑁 J𝑆K (𝑁 J𝑆K 𝑎)

𝑁 J𝑝 (𝑥)K 𝑎 = (¬𝑝 (𝑥) 𝑈 𝑎)
𝑁 J{𝑆1} or {𝑆2}K 𝑎 = (𝑁 J𝑆1K 𝑎) ∧ (𝑁 J𝑆2K 𝑎)
𝑁 J{𝑆1} and {𝑆2}K 𝑎 = (𝑁 J𝑆1K 𝑎) ∨ (𝑁 J𝑆2K 𝑎)

Fig. 5. A simplified translation of VPDL to LTL.

De Giacomo et al. 2013; Demri and d’Souza 2007; Wolper 1983] to extend LTL with free variables.
In this extension, atomic propositions are denoted as 𝑝 (𝑥), with 𝑥 = {𝑥1, . . . , 𝑥𝑛} representing
free variables. This extension allows us to express properties involving different entities as VPDL
variables, which is crucial for vulnerability analysis and detection.

The syntax of our extended LTL is given as follows:
𝜙 ::= 𝑡𝑟𝑢𝑒 | 𝑓 𝑎𝑙𝑠𝑒 | 𝑝 (𝑥) | (¬𝜙) | (𝜙 ∧ 𝜙) | (𝜙 ∨ 𝜙) | (𝑋𝜙) | (𝐹𝜙) | (𝜙𝑈𝜙)

Here, 𝑝 (𝑥) is a predicate that holds true at matching statements labeled with p(v). To support the
semantics of predicates over free variables, we introduce an environment 𝐸 = {𝑥 ↦→ v}, mapping
free variables to an arbitrary set of program variables v. Consequently, all judgments carry an
environment. The logical operators include negation (¬), conjunction (∧), and disjunction (∨). The
temporal operators are denoted as 𝑋 , 𝐹 , and 𝑈 . The 𝑛𝑒𝑥𝑡 operator (𝑋) indicates that a proposition
must hold in the next state, the 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 operator (𝐹) specifies that a proposition must hold at
some point in the future, and the 𝑢𝑛𝑡𝑖𝑙 operator (𝑈) asserts that a proposition must hold until
another proposition is satisfied. These connectives are sufficient to express the complete semantics
of LTL, as previously concluded [Huth and Ryan 2004].

3.2.2 VPDL in LTL. Figure 5 shows the translation of a VPDL description into an LTL formula.
𝑇 (𝑉@@𝑆) is the entry point, where𝑉 represents the declared VPDL variables and 𝑆 is the sequence
of statements in a VPDL description 𝑃 . The translation yields an LTL formula with free variables,
characterizing the program path starting from the program’s entry point, 𝑠𝑡𝑎𝑟𝑡 .
The translation process involves two sets of functions: 1) The 𝐶 functions, which translate 𝑆

sequences excluding those within “not {𝑆}”, and 2) The 𝑁 functions, which handle 𝑆 sequences
within “not {𝑆}”. Both 𝐶 and 𝑁 functions take 𝑆 and 𝑎 as arguments, where 𝑆 is the sequence of
statements (defined in Equation (1)) and 𝑎 is the formula generated to encode 𝑆 .
Both sets of translation rules are straightforward. Let us examine the 𝐶 functions. 𝐶J𝑆 𝑆K 𝑎

allows a sequence of statements 𝑆 𝑆 to be handled inductively as 𝐶J𝑆K(𝐶J𝑆K 𝑎).
For 𝐶J𝑝 (𝑥)K 𝑎, the predicate 𝑝 (𝑥) represents a statement matched in the target program. Since

the sequence of statements reflects temporal ordering, 𝐶J𝑝 (𝑥)K𝑎 indicates that 𝑝 (𝑥) is true, and 𝑎
must eventually hold true in the future. Therefore, it translates to 𝑝 (𝑥) ∧ 𝑋 𝐹 𝑎.

Next,𝐶J{𝑆1} or {𝑆2}K 𝑎 and𝐶J{𝑆1} and {𝑆2}K 𝑎 follow standard rules. For𝐶Jnot {𝑆}K 𝑎, we use
𝑁 J𝑆K 𝑎, as no matching sequence 𝑆 exists. Note that multiple nested “not {𝑆}” constructs are not
supported, as they can lead to confusion and are not practically useful.

The rules corresponding the 𝑁 functions can be understood similarly.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:7

𝑇 (𝑉 @@ not{𝑝5, 𝑝6, 𝑝7}, 𝑝9) , 𝑇 (𝑉@@𝑆)
= 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 𝐹 𝐶Jnot{𝑝5, 𝑝6, 𝑝7}, 𝑝9K𝑡𝑟𝑢𝑒 , 𝐶J𝑆 𝑆K𝑎
= 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 𝐹 𝐶Jnot{𝑝5, 𝑝6, 𝑝7}K(𝐶J𝑝9K𝑡𝑟𝑢𝑒) , 𝐶J𝑝 (𝑥)K𝑎
= 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 𝐹 𝐶Jnot{𝑝5, 𝑝6, 𝑝7}K(𝑝9 ∧ 𝑋𝐹 𝑡𝑟𝑢𝑒) , 𝐶Jnot{𝑆}K𝑎
= 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 𝐹 𝑁 J𝑝5, 𝑝6, 𝑝7K(𝑝9 ∧ 𝑋𝐹 𝑡𝑟𝑢𝑒) , 𝑁 J𝑆 𝑆K𝑎
= 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 𝐹 𝑁 J𝑝5, 𝑝6K(𝑁 J𝑝7K(𝑝9 ∧ 𝑋𝐹 𝑡𝑟𝑢𝑒)) , 𝑁 J𝑝 (𝑥)K𝑎
= 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 𝐹 𝑁 J𝑝5, 𝑝6K(¬ 𝑝7 𝑈 (𝑝9 ∧ 𝑋𝐹 𝑡𝑟𝑢𝑒)) , 𝑁 J𝑝 (𝑥)K 𝑎
= 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 𝐹 𝑁 J𝑝5K(𝑁 J𝑝6K(¬ 𝑝7 𝑈 (𝑝9 ∧ 𝑋𝐹 𝑡𝑟𝑢𝑒))) , 𝑁 J𝑝 (𝑥)K 𝑎
= 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 𝐹 𝑁 J𝑝5K(¬ 𝑝6𝑈 (¬ 𝑝7 𝑈 (𝑝9 ∧ 𝑋𝐹 𝑡𝑟𝑢𝑒))) , 𝑁 J𝑝 (𝑥)K 𝑎
= 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 𝐹 (¬𝑝5 𝑈 (¬ 𝑝6𝑈 (¬ 𝑝7 𝑈 (𝑝9 ∧ 𝑋𝐹 𝑡𝑟𝑢𝑒))))
Formula refinement transformation
⇒ 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑋 (¬𝑝5 𝑈 (¬ 𝑝6𝑈 (¬ 𝑝7 𝑈 (𝑝9 ∧ 𝑋𝐹 𝑡𝑟𝑢𝑒))))

Fig. 6. Derivation for Figure 3.

𝑠0

𝑠1

𝑠3

𝑠2

𝑎𝑐𝑐𝑒𝑝𝑡

𝑠𝑡𝑎𝑟𝑡

𝑝9

𝑝5

¬ 𝑝5 ∧ ¬ 𝑝9

true

𝑝9

¬ 𝑝7 ∧ ¬ 𝑝9𝑝9

𝑝6

¬ 𝑝6 ∧ ¬ 𝑝9

Fig. 7. The Büchi automaton for Figure 3.

After the translation process, we apply a formula refinement transformation that simplifies the
LTL formula while preserving its semantics. This targets specific sub-expressions, eliminating the
unnecessary 𝐹 operator: 𝐹 (𝜙1 𝑈 𝜙2) ⇒ 𝜙1 𝑈 𝜙2.

3.3 Example
Figure 3 presents the VPDL description for vulnerability CVE-2022-41936, with the CVE ID an-
notated in Line 1. Line 2 declares the set of variables 𝑉 : 𝑤𝑖𝑘𝑖 , 𝑠𝑝𝑎𝑐𝑒𝑠 , 𝑝𝑎𝑔𝑒 , 𝑝𝑎𝑔𝑒𝐼𝑑 , and 𝑑𝑜𝑐𝑅𝑒 𝑓 .
These VPDL variables are annotated with the type Variable, meaning they can match any type of
variable in the target Java program under analysis.

Lines 4-9 form a sequence of VPDL statements 𝑆 , starting with a not {𝑆} clause (lines 5-7) and
followed by a single statement (line 9). A predicate 𝑝 (𝑥) defines the code pattern to match in the
target program and the entities to be bound by VPDL variables. For example, the predicate in line
5 matches any call statement v1 = Utils.getPageId(...) in the target program, resulting in
𝑝𝑎𝑔𝑒𝐼𝑑 ↦→ {v1}, with𝑤𝑖𝑘𝑖 , 𝑠𝑝𝑎𝑐𝑒𝑠 , and 𝑝𝑎𝑔𝑒 bound to the respective arguments. The predicate in
line 6 matches Resolver.resolve(v2) only if v2 is aliased to v1, as 𝑝𝑎𝑔𝑒𝐼𝑑 would otherwise be
bound to two distinct entities, failing to satisfy the VPDL clause specified.

For simplicity, we refer to all predicates as 𝑝𝑖 , where 𝑖 denotes the line number. For instance, 𝑝5
represents the predicate 𝑝𝑎𝑔𝑒𝐼𝑑 = 𝑈𝑡𝑖𝑙𝑠 .𝑔𝑒𝑡𝑃𝑎𝑔𝑒𝐼𝑑 (𝑤𝑖𝑘𝑖, 𝑠𝑝𝑎𝑐𝑒𝑠, 𝑝𝑎𝑔𝑒) (line 5 in Figure 3).
Figure 6 illustrates the derivation of the VPDL specification in Figure 3 into an LTL formula,

based on the rule applications in Figure 5. The subformulas being transformed are highlighted in
red. For instance, applying 𝐶J𝑝 (𝑥)K𝑎 results in 𝐶J𝑝9K𝑡𝑟𝑢𝑒 = 𝑝9 ∧ 𝑋𝐹 𝑡𝑟𝑢𝑒 . After translation, the
formula refinement transformation yields the final LTL formula.

4 The Vulnerability Detection Algorithm
To detect a VPDL pattern, we first convert its LTL formula into a Büchi automaton [Duret-Lutz
et al. 2022b; Vardi and Wolper 1986], then use an IFDS-based analysis [Heros 2023; Reps et al. 1995]
introduced here to identify program paths satisfying the formula. Both the Büchi automaton and
IFDS analysis require extensions to handle free variables in the LTL formula.

4.1 Translate LTL to Automaton
A Büchi automaton [Duret-Lutz et al. 2022b; Vardi and Wolper 1986] is a type of 𝜔-automaton that
operates on infinite inputs, extending traditional finite automata. The automaton accepts an infinite
input sequence if and only if there exists a run that visits at least one accepting state infinitely

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

FSE108:8 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

often. An LTL formula 𝜙 can be converted to a Büchi automaton 𝐴𝜙 = (Σ, 𝑆, 𝑠0, 𝜌, 𝐹) [Vardi and
Wolper 1986] in the standard manner, using tools like Spot [Duret-Lutz et al. 2022a]. To handle free
variables, the automaton is extended by incorporating predicates over free variables in its alphabet:

• Σ = {𝑝 (𝑥)} is the finite set of alphabet, representing predicates declared in VPDL.
• 𝑆 is the finite set of states.
• 𝑠0 ∈ 𝑆 is the initial state.
• 𝜌 : 𝑆 × Σ → 2𝑆 is the transition function. Given 𝑠 ∈ 𝑆 and 𝑝 (𝑥) ∈ Σ, 𝜌 (𝑠, 𝑝 (𝑥)) is the set
of states the automaton moves to when in state 𝑠 and reading a program statement p(v)
matching 𝑝 (𝑥).

• 𝐹 ⊆ 𝑆 is the set of accepting states.

The LTL formula in Figure 6 can be transformed into the Büchi automaton shown in Figure 7,
where unsatisfiable conditions are discarded. The automaton transitions from one state to another
if the current input program statement being analyzed satisfies the edge’s transition condition.

4.2 Multi-object Typestate Analysis
Building on the IFDS algorithm [Reps et al. 1995], we developed a novel algorithm to detect recurring
vulnerability patterns specified in VPDL rules. The algorithm tracks automaton state transitions
and data dependencies across multiple variables, guided by the Büchi automaton 𝐴𝜙 .
At each program point, the analysis computes the set of possible automaton states, with each

state linked to an environment that maps a VPDL variable 𝑥 to a set of program variables v.
As the program is explored statement by statement, the analysis updates the automaton state
and its corresponding environment based on the transition function 𝜌 and the matched code
elements. Simultaneously, the analysis tracks data flow propagations, such as for the variable
docRef, by updating the set of program variables a VPDL variable maps to. This combined tracking
of automaton states and environments ensures precise capture of the temporal sequencing and
variable relationships specified by the VPDL rule. A program path is considered amatch for a VPDL
pattern if it leads the automaton to an accepting state with non-empty environments.

4.2.1 Dataflow Domain. The fact 𝑑 is a set of tuples {⟨𝑠, 𝑒⟩}, where 𝑠 ∈ 𝑆 is a state in the Büchi
automaton 𝐴𝜙 , and 𝑒 is an environment consisting of bindings for the VPDL variables. A VPDL
variable 𝑥 can have either positive bindings, representing the set of program variables to which 𝑥

is mapped, or negative bindings, indicating the set of program variables from which 𝑥 is excluded.
By convention, we use 𝑒 [𝑥] for the binding of 𝑥 in 𝑒 , and 𝑒 [𝑥 ↦→ v] to update the binding of 𝑥 to v.
To accurately represent both positive and negative bindings, we define our bindings similarly

to [Naeem and Lhoták 2008; Naeem and Lhotak 2008]. There are four distinct types of bindings:

• Top (𝑥 ↦→ ⊤): Indicates that 𝑥 can be any program variable.
• Bottom (𝑥 ↦→ ⊥): Represents an invalid binding, indicating an unreachable state.
• Positive Binding (𝑥 ↦→ v): Represents the set of variables v to which 𝑥 is mapped.
• Negative Binding (𝑥 ↦→ ¬v): Represents the set of variables v that 𝑥 cannot be mapped to.

The meet operation ⊓ is performed by set union, which combines two sets of tuples while
discarding identical tuples. Specifically, {⟨𝑠1, 𝑒1⟩} ⊓ {⟨𝑠2, 𝑒2⟩} = {⟨𝑠1, 𝑒1⟩, ⟨𝑠2, 𝑒2⟩}. This approach
ensures high precision, as distinct analysis results for different program paths are recorded in
separate tuples, rather than being merged when the paths converge at their confluence point.
At the program’s entry, the initial fact is 𝑑0 = ⟨𝑠0, {𝑥 → ⊤}⟩, where 𝑠0 is the initial state of the

Büchi automaton, and each VPDL variable 𝑥 is bound to ⊤, allowing it to bind to any program
variable during analysis.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:9

𝐹v1=v2 (𝑒 [𝑥]) =


𝑥 ↦→ ⊤, 𝑥 ↦→ ⊤
𝑥 ↦→ v ∪ {v1}, 𝑥 ↦→ v & v2 ∈ v
𝑥 ↦→ v, 𝑥 ↦→ v & v2 ∉ v
𝑥 ↦→¬{v ∪ {v1}}, 𝑥 ↦→¬v & v2 ∈ v
𝑥 ↦→¬v, 𝑥 ↦→¬v & v2 ∉ v

𝐹v1=v2 (𝑒) =
⋃

𝑒 [𝑥]∈𝑒
𝐹v1=v2 (𝑒 [𝑥])

𝐹v1=v2 (⟨𝑠, 𝑒⟩) = ⟨𝑠, 𝐹v1=v2 (𝑒)⟩

𝐹v1=v2 (⟨𝑠, 𝑒⟩) =
⋃

⟨𝑠,𝑒 ⟩∈⟨𝑠,𝑒 ⟩
𝐹v1=v2 (⟨𝑠, 𝑒⟩)

Fig. 8. Flow function for assignment statement v1=v2.

Meet ⊓ over bindings:

𝑥 ↦→ ⊤ ⊓ 𝑥 ↦→ 𝑎𝑛𝑦 = 𝑥 ↦→ 𝑎𝑛𝑦

𝑥 ↦→ v ⊓ 𝑥 ↦→ v′ =
{
𝑥 ↦→ v ∩ v′, v ∩ v′ ≠ ∅
𝑥 ↦→ ⊥, v ∩ v′ = ∅

𝑥 ↦→ v ⊓ 𝑥 ↦→ ¬v′ =
{
𝑥 ↦→ ⊥, v ∩ v′ ≠ ∅
𝑥 ↦→ v, v ∩ v′ = ∅

𝑥 ↦→ ¬v ⊓ 𝑥 ↦→ ¬v′ = 𝑥 ↦→ ¬{v ∪ v′}

𝑒 ⊓ 𝑥 ↦→ v′ = 𝑒 [𝑒 [𝑥] ⊓ 𝑥 ↦→ v′]

𝑒 ⊓ 𝑥 ↦→ ¬v′ = 𝑒 [𝑒 [𝑥] ⊓ 𝑥 ↦→ ¬v′]

Flow function 𝐹p(v):

𝐹p(v)(⟨𝑠,𝑒 ⟩) =


⟨𝑠′, 𝑒 ⊓ 𝑥 ↦→ {v}⟩, 𝑠

𝑝 (𝑥)
−−−−→ 𝑠′

⟨𝑠′, 𝑒 ⊓ 𝑥 ↦→ ¬{v}⟩, 𝑠
¬𝑝 (𝑥)
−−−−−→ 𝑠′

⟨𝑠′, 𝑒⟩, 𝑠
¬𝑞 (𝑥)
−−−−−→ 𝑠′

𝐹
p(v)(⟨𝑠,𝑒 ⟩) =

⋃
⟨𝑠,𝑒 ⟩∈⟨𝑠,𝑒 ⟩

𝐹p(v) (⟨𝑠, 𝑒⟩)

Fig. 9. Flow function for the predicate-matching statement p(v).

4.2.2 Flow Functions. Non-trivial flow (transfer) functions are required to handle two types of
statements: one for assignment statements (v1 = v2), which updates the dataflow facts for v1 by
incorporating the dataflow facts of v2, and one for predicate-matching statements (p(v)), which
updates both the automaton state and its corresponding environment. All other statements do not
modify any input dataflow facts, and their transfer functions are modeled as identity functions.

Figure 8 gives the flow function for an assignment statement v1 = v2. In this case, we bind 𝑥 to
v1 if 𝑥 is bound to v2. The environment 𝑒 is updated accordingly, and the flow function updates the
input fact 𝑑 by modifying the environment 𝑒 of each tuple ⟨𝑠, 𝑒⟩, while preserving the state 𝑠 .

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

FSE108:10 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

𝑙 : 𝑥 = 𝑦

alias(𝑥,𝑦)
alias(x,y) 𝑙 : 𝑧 = 𝑦

alias(𝑥, 𝑧)
[Assign]

𝑙1 : 𝑥 = 𝑦.𝑓 𝑙2 : 𝑥 ′ = 𝑧.𝑓 alias(𝑦, 𝑧)
alias(𝑥, 𝑥 ′)

[Load]

𝑙1 : 𝑦.𝑓 = 𝑥 𝑙2 : 𝑥 ′ = 𝑧.𝑓 alias(𝑦, 𝑧)
alias(𝑥, 𝑥 ′)

[Store]
𝑙 : 𝑥 = 𝑎0.𝑓 (𝑎1) {𝑚′} = calleeOf(𝑙)

alias(𝑎0, 𝑡ℎ𝑖𝑠𝑚
′) alias(𝑎1, 𝑝𝑚

′
1) alias(𝑥, 𝑟𝑒𝑡𝑚′)

[Call]

Fig. 10. Rules for demand-driven alias analysis.

Figure 9 presents the flow function for a predicate-matching statement p(v). For simplicity, we
assume that predicates take a single argument, though predicates with multiple arguments can
be handled by translating them into a list of single-argument statements. The meet operation for
two positive bindings maps a free variable to the intersection of its values in the bindings, with
a similar definition for negative bindings. The meet operation for an environment and a binding
generalizes naturally. The flow function 𝐹p(v) updates the automaton state and environment 𝑒 with
new bindings for each tuple ⟨𝑠, 𝑒⟩ in the input dataflow fact.

4.2.3 Aliases. Aliases are handled via an on-demand use-def analysis based on the inference rules
in Figure 10. Two variables may alias if they can point to a common object through assignments
([Assign]) or loads/stores ([Load] and [Store]). Our alias analysis is performed inter-procedurally
at a call statement only when it is a mono-call (with a unique callee function); otherwise, it is
ignored ([Call]). When a statement p(v) matches a predicate 𝑝 (𝑥), we compute the set of aliased
variables for v in the same scope and include it in the binding of 𝑥 .

Our experience with existing alias analysis tools, such as Boomerang [Späth et al. 2016], has
highlighted frequent aborts due to implementation bugs and missed aliases caused by framework-
injected objects. As a result, we have developed a customized alias analysis for detecting semantically
recurring vulnerabilities. Inspired by IDE𝑎𝑙 [Späth et al. 2017] and PATA [Li et al. 2022], this analysis
prioritizes efficiency and scalability over soundness, computing aliases based on direct def-use
relations. More complex aliasing rules can be explicitly specified using VPDL rules.

4.2.4 Example. Let us revisit our motivating example in Figure 1. Assume the patch is not applied.
The dataflow fact before line 6 is ⟨𝑠1, {𝑥 ↦→ ⊤}⟩. By matching the statement
Factory.createHistorySummary(wiki, spaces, page) to𝑝9, the fact is updated to ⟨𝑎𝑐𝑐𝑒𝑝𝑡, {𝑤𝑖𝑘𝑖
↦→ {wiki}, . . . , 𝑑𝑜𝑐𝑅𝑒 𝑓 ↦→ ⊤}⟩, signifying a vulnerable path with the accepting state 𝑎𝑐𝑐𝑒𝑝𝑡 .

If the patch is applied, the predicate-matching statement at line 3 results in two tuples: ⟨𝑠2, {𝑤𝑖𝑘𝑖 ↦→
{wiki}, . . . , 𝑝𝑎𝑔𝑒𝐼𝑑 ↦→ {pageId}, 𝑑𝑜𝑐𝑅𝑒 𝑓 ↦→ ⊤}⟩ and ⟨𝑠1, {𝑤𝑖𝑘𝑖 ↦→ ¬{wiki}, . . . }⟩. Consider the
corresponding Büchi automaton in Figure 7. From state 𝑠2, the automaton transitions to 𝑠2 itself
and 𝑠3, but the accepting state cannot be reached. From state 𝑠1, the automaton may transition to
the accepting state 𝑎𝑐𝑐𝑒𝑝𝑡 if 𝑝9 is matched. However, the binding𝑤𝑖𝑘𝑖 ↦→ ¬{wiki} prevents the
matching of line 6 to 𝑝9, so no vulnerability is reported.

4.3 IFDS-Based Implementation
Based on its architecture (Figure 2), VulPA’s implementation primarily involves automaton genera-
tion, an IFDS-based analysis algorithm, and a demand-driven alias analysis. The Spot [Duret-Lutz
et al. 2022a] library is used to convert LTL formulas into Büchi automata. We implemented a
demand-driven use-def analysis to compute alias results for the IFDS solver within the current
scope. Below, we discuss the implementation of our IFDS-based analysis algorithm.

4.3.1 IFDS. An IFDS problem 𝐼𝑃 is defined as a five-tuple 𝐼𝑃 = (𝐺∗, 𝐷, 𝐹,𝑀,⊓) [Reps et al. 1995].
𝐺∗ = (𝑁 ∗, 𝐸∗) represents the supergraph, or the inter-procedural control flow graph (ICFG) of the
program. The domain 𝐷 denotes a finite set of dataflow facts. 𝐹 , a subset of 2𝐷 −→ 2𝐷 , contains a set
of flow functions that are distributive over the meet operator ⊓ (either set union or intersection).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:11

Finally,𝑀 maps edges in 𝐸∗ to their corresponding flow functions in 𝐹 . The IFDS problem is solved
by computing graph reachability over an exploded graph (over 𝐺∗), where each element in 𝐷 is
represented as a node at every program point, and flow functions are transformed into edges.

In Section 4.2, we formulated the multi-object typestate analysis as an IFDS problem, where the
flow functions in Figures 8 and 9 are distributive. We implemented this analysis using Heros [Heros
2023], a widely-used IFDS framework, and the Soot framework [Soot 2024] for tasks like parsing
Java bytecode and building the inter-procedural control flow graphs.

4.3.2 Optimizations. We introduce three optimization techniques to improve the efficiency of our
multi-object typestate analysis by reducing unnecessary variable bindings and, consequently, the
number of facts being propagated during the analysis: (1) Bindings are maintained only for program
variables accessible in the current scope. At procedure boundaries, only bindings to access paths
with base variables as actual parameters are propagated to the callee. (2) If a VPDL variable 𝑥 is not
referenced in subsequent state transitions, its binding is simplified to 𝑥 ↦→ ⊤. (3) Identical tuples
resulting from these optimizations are merged.

5 Evaluation
We evaluate VulPA based on its ability to identify existing and new recurring vulnerabilities, as
well as its analysis performance. Tested on 26 Java applications using rules from 34 CVEs, VulPA
identified 90 new vulnerabilities with a 23.7% false positive rate, outperforming existing tools
(ReDeBug, VUDDY, SourcererCC, PHunter, PPT4J, FlowDroid, and IDE𝑎𝑙), which collectively
found only 13. VulPA effectively uncovers complex vulnerabilities that were missed by state-of-
the-art tools. Our evaluation seeks to answer the following research questions:

• RQ1: Can VulPA detect known vulnerabilities?
• RQ2: Can VulPA detect more new recurring vulnerabilities than state-of-the-art tools by
leveraging the expressive power of VPDL?

• RQ3: How time-efficient is VulPA’s analysis?

5.1 Experiment Setup
Dataset.We evaluated VulPA using a set of real-world applications with known CVEs, listed in
Table 1, to assess its ability to detect recurring vulnerabilities. To compile this dataset, we reviewed
all 34,694 CVE [CVE 2024] records from March 2022 to February 2023. Of these, 119 Java-related
CVEs with known patches were identified. After manual examination, we excluded 63 entries with
root causes outside of Java files and removed 22 CVEs where the corresponding projects failed to
compile. This left us with a refined dataset of 34 CVEs, representing 63 vulnerabilities (with some
CVEs assigned to multiple vulnerabilities) across 26 applications.

Baselines. We compared VulPA with seven well-known tools, as summarized in Table 2. These
tools represent a diverse set of recurring vulnerability detection approaches: ReDeBug [Jang
et al. 2012] and VUDDY [Kim et al. 2017] are signature-based recurring vulnerability detection
tools; SourcererCC [Sajnani et al. 2016] is a clone detection tool; PHunter [Xie et al. 2023] and
PPT4J [Pan et al. 2024] identify the presence of patches to report unpatched vulnerable software
versions; FlowDroid [Arzt et al. 2014] and IDE𝑎𝑙 [Späth et al. 2017] are well-established tools for
taint and typestate analysis, respectively.
To facilitate comprehensive program analysis, we adopted the experimental configuration pro-

posed by IDE𝑎𝑙 [Späth et al. 2017]: distinct sources are separately analyzed by the underlying IFDS
solver and a time limit of 30 seconds per seed is imposed for VulPA, FlowDroid, and IDE𝑎𝑙 . This
constraint allows for a thorough examination while effectively managing computational resources.
The three tools mentioned above were configured to start analysis from common entry points such

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

FSE108:12 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

Table 1. The real-word dataset.

Project #Stars #Files #Lines CVEs

AntiSamy 174 37 10,235 CVE-2022-29577
Appointmentscheduling 14 166 17,824 CVE-2022-4727
Cloudsync 177 36 6,950 CVE-2022-4773
Dragonfly 7 25 1,976 CVE-2022-41967
DSpace 843 3,379 572,475 CVE-2022-31193, CVE-2022-31194, CVE-2022-31195
eionet.contreg 1 660 99,805 CVE-2022-4513
JATOS 78 200 35,756 CVE-2022-4878
jgit-cookbook 1.8k 76 5,556 CVE-2022-4817
jLEMS 8 618 56,208 CVE-2022-4583
Joget 499 615 134,711 CVE-2022-4859, CVE-2022-4560
MCPMappingViewer 215 27 4,708 CVE-2022-4494
Netty 33.2k 2,842 501,856 CVE-2022-41915
OneDev 12.8k 3,410 371,228 CVE-2022-38301, CVE-2023-24828
Portofino 180 657 72,446 CVE-2022-3952
qtiworks 66 1,056 136,733 CVE-2022-39367
RuoYi 5.4k 271 36,027 CVE-2022-32065
spring-boot-admin 12.3k 333 30,238 CVE-2022-46166
SCIFIO 86 336 79,721 CVE-2022-4493
SuperXray 1.2k 21 4,683 CVE-2022-41958
SurveyKing 2.9k 355 22,304 CVE-2022-26249
TJWS2 65 90 49,521 CVE-2022-4594
UnsafeAccessor 22 50 10,454 CVE-2022-31139
Venice 29 826 194,741 CVE-2022-36007
Vert.x-Web 1.1k 764 124,682 CVE-2023-24815
Widoco 266 34 12,063 CVE-2022-4772
Xwiki 932 6,124 871,033 CVE-2022-29253, CVE-2022-41929, CVE-2022-41936,

CVE-2023-26471, CVE-2023-26475

Table 2. Overview of VulPA and state-of-the-art tools in detecting recurring vulnerabilities.

Tool Description Target Vulnerability Pattern Input

ReDeBug [Jang
et al. 2012]

Signature-based Recurring Vulnerability
Detection (Line-Level)

Source Code Patch Files

VUDDY [Kim
et al. 2017]

Signature-based Recurring Vulnerability
Detection (Method-Level)

Source Code Pre-Collected Vulnerable Method
Signatures (Online Database)

SourcererCC [Saj-
nani et al. 2016]

Clone Detection (Token-Level Similarity) Source Code Patch-Related Vulnerable Files

PHunter [Xie
et al. 2023]

Patch Presence Testing (Candidate
Method Localization via Similarity)

Bytecode Patch File and Both Pre-Patch and
Post-Patch Bytecode

PPT4J [Pan et al.
2024]

Patch Presence Testing (Precise Method
Localization via Signature Matching)

Bytecode Patch File, Both Pre-Patch and
Post-Patch Source Code and
Bytecode

FlowDroid [Arzt
et al. 2014]

Taint Analysis Bytecode Taint Sources, Sinks, and Sanitizers

IDE𝑎𝑙 [Späth et al.
2017]

Typestate Analysis Bytecode State Transition Rules

VulPA Multi-Object Typestate Analysis Bytecode VPDL Rules

as main methods, RESTful endpoints, and web framework handlers. The rest five tools–ReDeBug,
VUDDY, SourcererCC, PHunter, and PPT4J–used their default parameter settings, which are
considered to yield overall best performance in practice. All detection results were independently
verified by two researchers to ensure the correct classification of true and false positives.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:13

Computing Environment. All experiments were conducted on a 64-core Intel(R) Xeon(R) CPU
E7-4809 v3 @ 2.00GHz machine with 1 TB of memory, running Clear Linux OS 41370. For the
three tools, FlowDroid, IDE𝑎𝑙 , and VulPA, we allocated a maximum of 128GB JVM heap space for
each run, which is sufficient for these tools to analyze all projects in Table 1 with their respective
detection rules.

5.2 RQ1: Ability to Detect Existing Vulnerabilities
We ran VulPA alongside the seven baseline tools to assess their ability to detect the 34 known
CVEs in Table 1. To support the analysis of each CVE listed in Table 1, three researchers developed
and validated the detection rules for FlowDroid, IDE𝑎𝑙 , and VulPA. To ensure a fair comparison
and minimize bias, these rules were derived from the same underlying automata generated by
VPDL, with each rule being cross-reviewed by other researchers for accuracy. In total, we manually
created 34 VPDL rules for VulPA (one for each CVE), 8 rules for FlowDroid, and 11 rules for IDE𝑎𝑙
(Table 3). Additionally, 26 CVEs could not be expressed as taint rules for FlowDroid, and 23 CVEs
could not be expressed as typestate rules for IDE𝑎𝑙 .

For the remaining five tools, we provided the relevant source code, bytecode, and patch files for
each CVE as detection inputs: ReDeBug utilizes patch files as inputs; VUDDY relies on an online
database, and our attempts to construct a local database using open-source tools were unsuccessful,
as they did not generate any reports. This makes it nearly impossible to manually configure or
enhance this tool effectively. SourcererCC takes pre-patched vulnerable source files as inputs for
file-level clone detection, but its method-level detection is less reliable due to limitations in its slicing
technique, which often results in incomplete methods missing critical code segments. PHunter and
PPT4J require patch files along with the corresponding pre- and post-patch source or bytecode files
to identify the existence of patches. When these tools determine that the target vulnerable project
has not been patched, we consider it a successful identification of all corresponding vulnerabilities.
Table 3 reports our results, showing that these 34 CVEs correspond to a total of 63 known

vulnerabilities. In analyzing the detection results, we focus on vulnerabilities reported in the
source locations of these known vulnerabilities, excluding bugs found in other methods or files.
The three tools—VulPA, SourcererCC, and PPT4J—successfully detected all 63 vulnerabilities.
SourcererCC identified all vulnerable file clones, as its input pre-patched files were exact copies
in the analyzed target programs. PPT4J correctly reported missing patches for all 34 CVEs, though
it could not extract patch features for 4 CVEs, which were also considered as missing patches.
PHunter identified 49 vulnerabilities across 29 CVEs. FlowDroid detected 16 vulnerabilities
across 7 CVEs, while IDE𝑎𝑙 reported 2 vulnerabilities. ReDeBug detected 14 vulnerabilities across 8
CVEs, and VUDDY identified 9 vulnerabilities across 6 CVEs.

Limited Expressiveness of FlowDroid and IDE
𝑎𝑙
. Out of the 34 CVEs, 11 can be abstracted

as taint analysis problems solvable by FlowDroid. Additionally, 14 CVEs can be expressed in
typestate rules for IDE𝑎𝑙 , which are more general than standard taint analysis. However, both IDE𝑎𝑙
and FlowDroid are limited to specifying method invocations, making them unsuitable for rules
involving field accesses without code modification. As a result, we were able to specify only 11
rules for IDE𝑎𝑙 and 8 rules for FlowDroid.

False Negatives of Other Existing Tools. ReDeBug detects recurring vulnerabilities by match-
ing code hunks from patch files, which can lead to false negatives and false positives if the sur-
rounding context is irrelevant to the vulnerability or if the number of lines in a hunk falls below the
sliding window size (4 lines by default), due to whitespaces or comments. We experimented with
various parameter settings beyond the default configuration, but these adjustments did not detect
any additional vulnerabilities. VUDDY requires exact matching of patches in its online database
and fails to detect methods with code modifications irrelevant to the targeted vulnerabilities.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

FSE108:14 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

Table 3. Detection of 63 known vulnerabilities across 34 CVEs by VulPA and state-of-the-art tools: ReDeBug,

VUDDY, SourcererCC, PHunter, PPT4J, FlowDroid, and IDE
𝑎𝑙
.

CVE # Vul ReDeBug VUDDY SourcererCC PHunter PPT4J FlowDroid IDE
𝑎𝑙

VulPA

CVE-2022-29577 1 1 1 1 1 1 ✓
CVE-2022-4727 1 1 1 1 1 ✓
CVE-2022-4773 1 1 1 1 ✓ ✓ 1 ✓
CVE-2022-41967 1 1 1 1 1 ✓
CVE-2022-31193 1 1 1 1 1 ✓ ✓ 1 ✓
CVE-2022-31194 4 4 4 4 4 4 ✓
CVE-2022-31195 1 1 1 1 1 1 ✓
CVE-2022-4513 2 2 2 2 2 2 ✓
CVE-2022-4878 1 1 1 1 1 ✓
CVE-2022-4817 1 1 1 1 1 ✓ 1 ✓ 1 ✓
CVE-2022-4583 1 1 1 1 1 ✓
CVE-2022-4859 2 2 2 2 ✓ ✓ 2 ✓
CVE-2022-4560 6 6 6 6 6 ✓
CVE-2022-4494 1 1 1 1 1 ✓
CVE-2022-41915 2 2 2 2 2 ✓
CVE-2022-38301 1 1 1 1 1 ✓
CVE-2023-24828 9 1 9 9 ✓ 9 ✓
CVE-2022-3952 1 1 1 1 1 ✓ 1 ✓ 1 ✓
CVE-2022-39367 1 1 1 1 1 ✓
CVE-2022-32065 1 1 1 1 1 1 1 ✓
CVE-2022-46166 9 5 9 9 9 9 ✓ ✓ 9 ✓
CVE-2022-4493 1 1 1 1 1 ✓
CVE-2022-41958 3 3 3 3 2 ✓ ✓ 3 ✓
CVE-2022-26249 1 1 1 1 1 ✓
CVE-2022-4594 1 1 1 1 1 1 ✓
CVE-2022-31139 1 1 1 1 ✓ 1 ✓
CVE-2022-36007 1 1 1 1 1 1 ✓ ✓ 1 ✓
CVE-2023-24815 1 1 1 1 1 1 ✓
CVE-2022-4772 1 1 1 1 1 1 ✓
CVE-2022-29253 1 0/1 1 1 1 1 ✓
CVE-2022-41929 1 1 1 1 1 ✓
CVE-2022-41936 1 1 1 1 1 ✓
CVE-2023-26471 1 1 1 ✓ 1 ✓
CVE-2023-26475 1 1 1 1 1 ✓

CVE𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 34 8 6 34 29 34 7 2 34
Vul𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 63 14 9 63 49 63 16 2 63

Note: ✓ indicates that the detection rule has been implemented manually.
PHunter missed 5 CVEs: 3 due to missing patch features and 2 because of exceptions during

patch condition evaluation in its similarity analysis. FlowDroid failed to detect 26 CVEs that could
not be configured with taint analysis rules, and 3 additional vulnerabilities due to exceptions in
Soot, resulting in 47 undetected vulnerabilities across 28 CVEs. Surprisingly, IDE𝑎𝑙 only reported 2
vulnerabilities, despite its theoretical advantage over FlowDroid. We suspect this may be due to
bugs in its implementation, which warrants further investigation.
VPDL demonstrates superior expressiveness, as it allows specifying all 34 CVEs in our dataset and

enables VulPA to detect all 63 known vulnerabilities across them.

5.3 RQ2: Ability to Detect New Vulnerabilities
In this second RQ, we ran VulPA and the seven baseline tools on the set of projects in Table 1 to
detect new recurring vulnerabilities, where all known CVEs in Table 1 have been patched. For each
project, we ran each static analysis tool with all available detection rules enabled, i.e., each tool
attempted to detect the recurrence of all 34 studied CVEs in each analyzed project.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:15

Table 4. Detection of new vulnerabilities by VulPA and state-of-the-art tools: ReDeBug, VUDDY, Sourcer-

erCC, PHunter, PPT4J, FlowDroid, and IDE
𝑎𝑙
. The #Real Result represents the total number of true positives

(excluding duplicate reports) reported by each tool for each project.

Project

#Real ReDeBug VUDDY SourcererCC PHunter PPT4J FlowDroid IDE
𝑎𝑙

VulPA

Result TP/FP TP/FP TP/FP TP/FP TP/FP TP/FP TP/FP TP/FP

AntiSamy 0 0 / 0 0 / 0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
Appointmentscheduling 0 0 / 3 0 / 0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
Cloudsync 5 0 / 3 0 / 0 0 / 1 0 / 0 0 / 0 1 / 0 0 / 0 5 / 0
Dragonfly 0 0 / 0 0 / 0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
DSpace 22 0 / 8 0 / 0 0 / 6 0 / 2 0 / 1 7 / 0 0 / 0 22 / 4
eionet.contreg 3 0 / 49 0 / 0 0 / 2 0 / 2 0 / 2 0 / 0 0 / 0 3 / 0
JATOS 4 0 / 0 0 / 0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 4 / 0
jgit-cookbook 0 0 / 0 0 / 0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
jLEMS 1 0 / 4 0 / 0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 1 / 0
Joget 8 0 / 19 0 / 0 0 / 8 0 / 3 0 / 0 0 / 0 0 / 0 8 / 5
MCPMappingViewer 4 0 / 0 0 / 0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 4 / 3
Netty 0 0 / 23 0 / 0 0 / 2 0 / 0 0 / 2 0 / 0 0 / 0 0 / 0
OneDev 0 0 / 108 0 / 0 0 / 10 0 / 3 0 / 1 0 / 0 0 / 0 0 / 1
Portofino 0 0 / 8 0 / 0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0 / 1
qtiworks 3 0 / 0 0 / 0 0 / 1 0 / 2 0 / 1 0 / 0 0 / 0 3 / 2
RuoYi 0 0 / 6 0 / 0 0 / 1 0 / 3 0 / 0 0 / 0 0 / 0 0 / 1
spring-boot-admin 0 0 / 0 0 / 0 0 / 9 0 / 2 0 / 0 0 / 0 0 / 0 0 / 0
SCIFIO 0 0 / 12 0 / 0 0 / 1 0 / 2 0 / 1 0 / 0 0 / 0 0 / 2
SuperXray 4 0 / 0 0 / 0 0 / 3 0 / 3 0 / 0 0 / 0 0 / 1 4 / 0
SurveyKing 4 0 / 0 0 / 0 0 / 1 0 / 2 0 / 0 0 / 0 0 / 0 4 / 0
TJWS2 7 0 / 46 0 / 0 0 / 1 0 / 3 0 / 1 0 / 0 0 / 0 7 / 3
UnsafeAccessor 0 0 / 3 0 / 0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
Venice 6 0 / 0 0 / 0 0 / 1 0 / 4 0 / 0 2 / 0 0 / 0 6 / 2
Vert.x-Web 9 0 / 23 0 / 0 0 / 1 0 / 2 0 / 0 2 / 0 0 / 0 9 / 2
Widoco 1 0 / 5 0 / 0 0 / 1 0 / 1 0 / 0 0 / 0 0 / 0 1 / 1
Xwiki 9 0 / 8 0 / 0 0 / 5 0 / 2 0 / 2 1 / 0 0 / 0 9 / 1

Total 90 0 / 328 0 / 0 0 / 63 0 / 36 0 / 11 13 / 0 0 / 1 90 / 28

Table 4 summarizes our results, including the number of true positives (TP) and false positives
(FP) reported by each tool. VulPA reported a total of 118 vulnerabilities, comprising 90 real recurring
vulnerabilities and 28 false positives, resulting in a false positive rate of 23.72%. In contrast, the
seven baseline tools were significantly less effective.

ReDeBug generated 328 false warnings, primarily due to the loss of precision when abbreviating
code hunks from source code patches. These abbreviated code lines often included irrelevant details
unrelated to the vulnerability root causes. VUDDY reported 5 CVEs whose signatures matched patch
signatures in its online database, but these were unrelated to the CVEs we studied. Consequently,
both signature-based tools failed to identify any new recurring vulnerabilities.

SourcererCC, PHunter, and PPT4J did not detect any new vulnerabilities. SourcererCC pro-
duced 63 false positives, as it was unable to distinguish between pre- and post-patch files. PHunter
incorrectly reported missing patches for 3 CVEs across 16 projects, leading to 36 false positives.
For instance, the patch for CVE-2022-4513 modified two methods, setUri() and setSearchTag(),
each containing only a single store statement. This simplicity in the patch caused incorrect method
matching and false positives. PPT4J reported 11 false positives: 6 due to errors in similar patch
presence testing, and 5 due to its inability to extract patch-related features. While some of these
false positives could be mitigated with alternative configuration settings, such adjustments might
introduce potential false negatives.
FlowDroid reported 13 true positives with no false positives, all of which were also identified

by VulPA. IDE𝑎𝑙 produced only 1 report, which was a false positive.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

FSE108:16 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

The eight tools together reported a total of 90 real vulnerabilities, with VulPA specifically
identifying all of them. Additionally, the other seven tools collectively reported only 13 new
vulnerabilities. This demonstrates the superiority of VulPA over the state of the art in detecting
new recurring vulnerabilities through its novel multi-object typestate analysis.
False Positives of VulPA. Among the 28 false positives reported by VulPA, 26 were due

to alternative fixes that differed from our VPDL description. For example, CVE-2022-31193 (an
open redirect vulnerability) was patched by adding a String.startsWith() method invocation
to sanitize the tainted string before reaching the sink sendRedirect(). However, an alternative
fix involves converting the tainted string to a URI object and checking it with regular expressions.
Our VPDL rule, based on the patch for CVE-2022-31193, resulted in false positives for such cases.
These false positives can be potentially avoided by refining the VPDL rules to account for these
alternative sanitizing mechanisms. The remaining 2 false positives reported by VulPA were caused
by imprecise alias analysis, which can be improved in future work.

FalseNegatives of ExistingTools. The five tools—ReDeBug, VUDDY, SourcererCC, PHunter,
and PPT4J—failed to identify any new vulnerabilities. ReDeBug, VUDDY, and SourcererCC detect
recurring vulnerabilities or code clones through token-based similarity matching, which is inher-
ently limited in detecting semantically recurring vulnerabilities. PPT4J tests for patch presence in
methods with identical signatures to those of the patched methods, making it incapable of detecting
new vulnerabilities in distinct methods. PHunter’s method similarity matching approach, although
potentially capable of finding new vulnerabilities, proved insufficient for detecting new recurring
vulnerabilities in our experiments. FlowDroid missed 77 real bugs, with 76 missed due to its taint
analysis rules not covering the relevant cases. The remaining false negative was caused by timeouts
triggered by the underlying IFDS solver. IDE𝑎𝑙 missed all 90 new vulnerabilities, due to limitations
in expressing vulnerability root causes and implementation bugs.
VulPA has proven effective in detecting real-world vulnerabilities, identifying issues that existing

tools miss with high precision. Its precision can be further enhanced with refined VPDL descriptions.

5.4 RQ3: Time Efficiency in Vulnerability Detection
We measured the analysis time for each tool in detecting new vulnerabilities during the experiment
conducted for RQ2, as described in Section 5.3. SourcererCC required an average of only 6 seconds
per project. The two signature-based tools also completed within seconds, averaging 11 seconds
for ReDeBug and 22 seconds for VUDDY. The two patch presence testing tools exhibited distinct
characteristics: PPT4J tested for patch existence only in methods with identical signatures to those
of patched methods, taking an average of 24.36 seconds per project. In contrast, PHunter performed
similarity matching for all methods, averaging 8,079.31 seconds per project.

Figure 11 compares the analysis times of VulPA, FlowDroid, and IDE𝑎𝑙 , running with 34 VPDL
rules, 8 taint rules, and 11 typestate rules, respectively. VulPA successfully analyzed 19 projects
within 10 minutes, and 24 projects were completed within 1 hour. The most time-consuming project,
Vert.x-Web, took 5.9 hours to analyze. This project required significantly more time than others
due to its large number of third-party libraries: it was compiled into 49 JAR files and, compared to
other benchmarks, consumed notably more memory to load all these JAR files.
FlowDroid completed its analysis within 1 hour for 25 out of the total 26 projects. However,

its analysis time was significantly longer than VulPA’s: the average analysis time (6,206 seconds)
was 3.16 × longer than VulPA’s (1,491 seconds), and for the Vert.x-Web benchmark, FlowDroid
took 6.68 × longer (141,604 seconds for FlowDroid vs. 21,199 seconds for VulPA). IDE𝑎𝑙 also
analyzed 25 projects within 1 hour but was faster than VulPA for only four benchmarks: DSpace,
Joget, Vert.x-Web, and Xwiki. On average, IDE𝑎𝑙 ’s analysis time was 1.67 × faster than VulPA’s

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:17

21,199 141,604

100

200

400

800

1,600

3,200

6,400

12,800
Time (s)

VulPA FlowDroid IDEal

Fig. 11. Analysis times for VulPA, FlowDroid, and IDE
𝑎𝑙

in RQ2 (Section 5.3) across various projects.

(851 seconds compared to 1,419 seconds). Among these three static analysis tools evaluated, IDE𝑎𝑙
was the fastest, though its efficiency is questionable due to implementation bugs. VulPA, on the
other hand, is significantly faster than FlowDroid, thanks to its more efficient handling of aliases,
designed to trade soundness for scalability (Section 4.2.3).

Compared to non-static-analysis tools—ReDeBug and VUDDY (signature-based), SourcererCC
(clone-based), and PHunter and PPT4J (patch-presence-testing-based)—static analysis tools require
much longer analysis times but, as demonstrated here with VulPA, can be designed to offer
significantly better detection capabilities.

In our experiments, we imposed a 30-second time limit per seed for VulPA, FlowDroid, and IDE𝑎𝑙
to ensure thorough detection. VulPA had 3.45% (226 out of 6,560) of seeds timed out, FlowDroid
had 10.97% (62 out of 565), and IDE𝑎𝑙 had 2.57% (13 out of 505). A timeout forces the IFDS solver to
terminate early, potentially missing some vulnerabilities. We conducted additional experiments by
gradually increasing the time limit from 30 seconds to 10 minutes per seed, but this extension did
not yield any new vulnerability reports or reduce false positives.

VulPA successfully analyzed 24 out of 26 projects within 1 hour, demonstrating significantly higher

efficiency compared to the classic taint analysis tool, FlowDroid. This performance advantage is

particularly notable given that VulPA applied more detection rules and identified a substantially

greater number of new vulnerabilities.

5.5 Case Studies
We present several case studies to illustrate the process of deriving VPDL rules from existing
patches, how these rules precisely capture the root causes of vulnerabilities, and how refining
VPDL rules can improve detection capabilities.

Writing VPDL Rules. The intuitive syntax of VPDL enables developers to quickly translate
vulnerability patches into actionable detection rules. As illustrated in Figure 12, the path traversal
vulnerability CVE-2022-4494 in the Widoco project (Figure 12(a)) arises when a file path is con-
structed using ze.getName(), which could allow directory traversal outside destDir, including
unauthorized directories. The fix (lines 3 and 4) ensures the path is validated as a subdirectory
of destDir. Figure 12(b) shows the corresponding VPDL rule, which differs from Figure 12(a) by
representing program variables (e.g., fileName and newfile) as VPDL meta variables (e.g., 𝑛𝑎𝑚𝑒

and 𝑓 𝑖𝑙𝑒) and encoding the patch logic using the “not” operator. The simplicity of VPDL’s syntax
allows developers to easily derive detection rules from patched code examples, potentially enabling
future advancements in automated rule extraction techniques.

Describing Vulnerability Root Causes. Figure 13 illustrates the remote code execution vulner-
ability CVE-2023-26476 (from the Xwiki project) and its corresponding VPDL rules. In Figure 13(a),

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

FSE108:18 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

1 @CVE-2022-4494@

2 Variable name, file, path1, path2;

3 @@

4 name = ZipEntry.getName();

5 file = new File(*, name);

6 not {

7 path = file.toPath();

8 path2 = path.normalize();

9 path2.startsWith(*); }

10 file.mkdirs();

1 String fileName = ze.getName();

2 File newFile = new File(destDir, fileName);

3 + if (!newFile.toPath().normalize().startsWith(
destDir.toPath().normalize())) {

4 + throw new IOException("Bad zip entry"); }

5 newFile.mkdirs();

(b) The VPDL rule

(a) Code snippets in the Widoco project

Fig. 12. CVE-2022-4494.

1 @CVE-2023-26475@

2 BaseClass xclass;

3 String name;

4 Variable comment;

5 @@

6 xclass.addTextAreaField(name, *, *, *);

7 comment = xclass.getField(name);

8 comment.setEditor(*);

1 xclass.addTextAreaField("highlight", "Highlighted", 40, 2);

2 xclass.addNumberField("replyto", "Reply To", 5, "integer");

3 String name = "comment";

4 - xclass.addTextAreaField(name, "Comment", 40, 5);

5 + xclass.addTextAreaField(name, "Comment", 40, 5, true);

6 TextAreaClass comment = xclass.getField(name);

7 comment.setEditor((String) null);

(a) Code snippet in the Xwiki project

(b) The VPDL rule

Fig. 13. CVE-2023-26475.

line 4 adds an unrestricted area field by calling xclass.addTextAreaField() without setting the
restrict attribute. Lines 6 and 7 make this field editable via xclass.getField().setEditor(),
enabling unrestricted comment editing. The fix replaces line 4 with line 5, correctly restricting the
field. This vulnerability involves implicit references across variables (xclass, name, and comment)
and APIs, making it challenging for dataflow-based analyses to track such relationships.
The VPDL rules in Figure 13(b) capture these relationships (lines 6–8), precisely describing

the root cause. Notably, ignoring these relationships and disallowing unrestricted area fields (i.e.,
removing lines 7–8) would cause VulPA to report 63 false positives.
Refining VPDL Rules. As shown in Figure 3, we applied a single VPDL rule to specify CVE-

2022-41936 for the Xwiki application. This approach led to the discovery of two previously unknown
vulnerabilities, which were promptly acknowledged and validated by the developers. Building on
this success, we refined the rule incrementally. By making minor adjustments to bug-triggering
sensitive operations—such as replacing the call to createHistorySummary() (line 9) with the
createWiki()method, which returns the content of the queried page—we uncovered an additional
24 new vulnerabilities (not included in Table 3). These newly detected cases are currently being
examined by the developers to assess the potential for sensitive information leakage.

5.6 Disscussion
5.6.1 Threats to Validity. The effectiveness of VulPA relies on manually written VPDL rules, which
may vary based on differing interpretations of CVEs. To address this, we conducted peer reviews
to ensure consistent rule derivation. To mitigate the risk of incorrectly validated bug reports, two
researchers independently cross-checked each report. Furthermore, we submitted all valid reports1
to developers via issues, pull requests, and JIRA tickets.
To date, we have received 42 responses from developers across nine projects: Xwiki, Widoco,

Qtiworks, SurveyKing, SuperXray, JATOS, jLEMS, DSpace, and CloudSync. Among these, 22 reports
pertain to projects or outdated versions no longer maintained (e.g., CloudSync, DSpace, Qtiworks,
and SuperXray). Twenty reports were fixed and merged (e.g., Xwiki, Widoco, SurveyKing, jLEMS,

1The list of reports can be viewed at https://caoliqingstudio.github.io/FSE25-VulPA/FSE25-VulPA-Report.html

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

https://caoliqingstudio.github.io/FSE25-VulPA/FSE25-VulPA-Report.html

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:19

JATOS, and DSpace), with four confirmed as CVEs: Xwiki’s two reports were assigned CVE-2024-
45591, while SurveyKing’s two reports received CVE-2024-31567 and CVE-2024-31568.

5.6.2 Limitations and Future Work. VulPA currently supports only Java applications and can-
not detect cross-language vulnerabilities. Additionally, VPDL is unable to express vulnerabilities
originating from configuration files or annotations, which limits its detection scope. To address
these limitations, future work could focus on extending VPDL to support multiple programming
languages and a broader range of vulnerability patterns. We also plan to explore the use of large
language models (LLMs) to automatically generate detection rules from vulnerability databases
and security reports, reducing the manual effort required for rule construction.

6 Related Work
In this section, we review prior work closely related to this research.

6.1 Recurring Vulnerability Detection
Many recurring vulnerability detection techniques focus on identifying clones of vulnerable
code [Jang et al. 2012; Kang et al. 2022; Kim et al. 2017; Pham et al. 2010; Shi et al. 2024; Xiao
et al. 2020]. These methods generate signatures from vulnerability fixes and match them to the
analyzed code. ReDeBug [Jang et al. 2012] and VUDDY [Kim et al. 2017] use token sequences
from adjacent code lines, but cannot detect vulnerabilities with the same root cause but different
structures, as shown in this work. In contrast, methods using dependence graph signatures [Kang
et al. 2022; Pham et al. 2010; Shi et al. 2024; Xiao et al. 2020; Zhan et al. 2024; Zhang et al. 2022] better
preserve semantic relationships and handle structural variations. However, extracted signatures
may inadvertently capture unrelated code patterns due to varying patch quality [Xu et al. 2022].
Static analysis methods detect recurring vulnerabilities using dedicated algorithms [Huang

et al. 2024; Krüger et al. 2017; Lu et al. 2022; Rahaman et al. 2019; Singleton et al. 2020; Son et al.
2011; Yan et al. 2018], often requiring domain expertise to address specific vulnerabilities like
missing permission checks or improper cryptography use. Some tools, such as FlowDroid [Arzt
et al. 2014], RAPID [Emmi et al. 2021], and others [CodeQL 2024; Fink et al. 2008; Hallem et al.
2002; Jaspan 2008; Pradel et al. 2012; Topl 2024], utilize configurable specifications but still demand
significant expertise, particularly for domain-specific vulnerabilities [Habib and Pradel 2018; Liu
et al. 2020]. In contrast, VulPA introduces a new vulnerability specification language resembling
patch representations, facilitating the detection of vulnerability variants and domain-specific issues,
and lowering the barrier for domain experts with limited program analysis expertise.

6.2 Model Checking
Model checking systematically verifies whether a system model satisfies properties specified in
temporal logic, typically using Computation Tree Logic (CTL) and Linear Temporal Logic (LTL).
CTL allows reasoning over branching paths and has been applied to compiler optimization [Lacey
et al. 2004], API evolution [Brunel et al. 2009; INRIA 2024], and program verification [Clarke et al.
1986; Song and Touili 2014]. LTL, suited for linear execution sequences, is effective for analyzing
specific traces [Armando et al. 2009; Khoury et al. 2016; Morse et al. 2015].

Büchi automata are equivalent to LTL formulas, a key result in model checking that enables the
automated verification of LTL properties over system models. Many model checking tools, such
as Spin [Holzmann 2004], NuSMV [Cimatti et al. 1999], and Spot [Duret-Lutz et al. 2022a], can
perform the translation from LTL formulas to Büchi automata.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

FSE108:20 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

6.3 IFDS/IDE
The Inter-procedural Finite Distributive Subset (IFDS) algorithm, introduced by Reps et al. [Reps
et al. 1995], solves inter-procedural data-flow problems over finite domains with distributive flow
functions. It has since been extended and optimized [Gui et al. 2023; He et al. 2023; Li et al. 2024a,
2021, 2024b; Naeem et al. 2010], and incorporated into major analysis frameworks such as Soot,
Heros, and WALA [Heros 2023; Soot 2024; WALA 2024].
IFDS underpins many static analysis tools [Arzt et al. 2014; He et al. 2019, 2018; Li et al. 2015]

used for taint tracking and vulnerability detection.
The IDE algorithm [Sagiv et al. 1996] extends IFDS to more precisely model value transformations

across procedures. Both IFDS and IDE have been widely used in typestate analysis [Emmi et al.
2021; Naeem and Lhoták 2008; Späth et al. 2017], which tracks object states throughout execution.

6.4 Typestate Analysis
Typestate analysis tracks object state transitions across method calls to detect illegal behaviors.
xgcc [Hallem et al. 2002] uses domain-specific languages like Metal to specify transitions, while
IDE𝑎𝑙 [Späth et al. 2017] improves precision with demand-driven alias analysis and strong up-
dates. Fusion [Jaspan 2008] specifies temporal constraints between objects using intraprocedural
"relations." Naeem and Lhoták [2008]; Naeem and Lhotak [2008] adopt the IFDS/IDE framework
with context- and flow-sensitive analysis, using tracematches [Allan et al. 2005] for multi-object
properties. Tac [Yan et al. 2017] boosts use-after-free detection precision by combining types-
tate analysis with machine learning. Accumulation analysis [Kellogg et al. 2022] soundly checks
typestate properties without alias information for a special class of typestate problems.
While existing approaches aim to balance precision and scalability across diverse application

scenarios, VulPA introduces an innovative method for detecting recurring vulnerabilities. It fea-
tures a new vulnerability specification language that mirrors patch representations, enabling the
identification of both vulnerability variants and domain-specific vulnerabilities. This approach
lowers the barrier for domain experts with minimal program analysis expertise to define and im-
plement vulnerability patterns. Additionally, VulPA leverages the well-established IFDS algorithm
to analyze program paths that correspond to these vulnerability patterns.

7 Conclusion
In this paper, we introduce a VPDL language to accurately describe vulnerability root causes and
develop an IFDS-basedmulti-object typestate analysis algorithm to detect vulnerabilities specified in
VPDL rules. We have implemented a tool, VulPA, that can precisely detect recurring vulnerabilities
involving complex data and control dependencies across multiple objects. Our evaluation on real-
world cases demonstrates VulPA’s effectiveness in detecting both known and previously unknown
vulnerabilities, surpassing state-of-the-art tools.

8 Data-Availability Statement
The artifact is publicly at available [Cao 2025].

Acknowledgments
We thank all reviewers for their valuable feedback. This work is supported by the National Key
R&D Program of China (2022YFB3103900), the National Natural Science Foundation of China
(62132020, 62402474, and 62202452), the China Postdoctoral Science Foundation (2024M753295),
and Zhongguancun Laboratory.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:21

References
Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Ondřej Lhoták, Oege de Moor,

Damien Sereni, Ganesh Sittampalam, and Julian Tibble. 2005. Adding trace matching with free variables to AspectJ.
In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications (San Diego, CA, USA) (OOPSLA ’05). Association for Computing Machinery, New York, NY, USA, 345–364.
https://doi.org/10.1145/1094811.1094839

Alessandro Armando, Roberto Carbone, and Luca Compagna and. 2009. LTL model checking for security pro-
tocols. Journal of Applied Non-Classical Logics 19, 4 (2009), 403–429. https://doi.org/10.3166/jancl.19.403-429
arXiv:https://doi.org/10.3166/jancl.19.403-429

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. 2014. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

Dirk Beyer, Sumit Gulwani, and David A Schmidt. 2018. Combining model checking and data-flow analysis. Handbook of
Model Checking (2018), 493–540.

Julien Brunel, Damien Doligez, René Rydhof Hansen, Julia L. Lawall, and Gilles Muller. 2009. A Foundation for Flow-Based
Program Matching Using Temporal Logic and Model Checking. In The 36th Annual ACM SIGPLAN - SIGACT Symposium

on Principles of Programming Languages. Savannah, GA, USA, 114–126.
Doron Bustan, Alon Flaisher, Orna Grumberg, Orna Kupferman, and Moshe Y Vardi. 2005. Regular vacuity. In Correct

Hardware Design and Verification Methods: 13th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2005,

Saarbrücken, Germany, October 3-6, 2005. Proceedings 13. Springer, 191–206.
Liqing Cao. 2025. VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis (Artifact).

(4 2025). https://doi.org/10.6084/m9.figshare.27002680.v2
Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. 1999. NuSMV: A new symbolic model verifier.

In Computer Aided Verification: 11th International Conference, CAV’99 Trento, Italy, July 6–10, 1999 Proceedings 11. Springer,
495–499.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic verification of finite-state concurrent systems using temporal
logic specifications. ACM Trans. Program. Lang. Syst. 8, 2 (April 1986), 244–263. https://doi.org/10.1145/5397.5399

CodeQL. 2024. github/codeql: CodeQL: the libraries and queries that power security researchers around the world, as well as

code scanning in GitHub Advanced Security. Retrieved April 3, 2024 from https://github.com/github/codeql
CVE. 2024. CVE Website. Retrieved March 23, 2024 from https://www.cve.org/
Giuseppe De Giacomo, Moshe Y Vardi, et al. 2013. Linear Temporal Logic and Linear Dynamic Logic on Finite Traces.. In

Ijcai, Vol. 13. 854–860.
Stéphane Demri and Deepak d’Souza. 2007. An automata-theoretic approach to constraint LTL. Information and Computation

205, 3 (2007), 380–415.
Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexandre Gbaguidi Aisse, Philipp Schlehuber-

Caissier, Thomas Medioni, Antoine Martin, Jérôme Dubois, Clément Gillard, and Henrich Lauko. 2022a. From Spot 2.0
to Spot 2.10: What’s New?. In Proceedings of the 34th International Conference on Computer Aided Verification (CAV’22)

(Lecture Notes in Computer Science, Vol. 13372). Springer, 174–187. https://doi.org/10.1007/978-3-031-13188-2_9
Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexandre Gbaguidi Aisse, Philipp Schlehuber-

Caissier, Thomas Medioni, Antoine Martin, Jérôme Dubois, Clément Gillard, et al. 2022b. From spot 2.0 to spot 2.10:
what’s new?. In International Conference on Computer Aided Verification. Springer, 174–187.

Michael Emmi, Liana Hadarean, Ranjit Jhala, Lee Pike, Nicolás Rosner, Martin Schäf, Aritra Sengupta, and Willem Visser.
2021. RAPID: checking API usage for the cloud in the cloud. In Proceedings of the 29th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. 1416–1426.
Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. 2008. Effective typestate verification in the

presence of aliasing. ACM Transactions on Software Engineering and Methodology (TOSEM) 17, 2 (2008), 1–34.
Yujiang Gui, Dongjie He, and Jingling Xue. 2023. Merge-Replay: Efficient IFDS-Based Taint Analysis by Consolidating

Equivalent Value Flows. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE).
319–331. https://doi.org/10.1109/ASE56229.2023.00027

Andrew Habib and Michael Pradel. 2018. How many of all bugs do we find? a study of static bug detectors. In Proceedings

of the 33rd ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France) (ASE ’18).
Association for Computing Machinery, New York, NY, USA, 317–328. https://doi.org/10.1145/3238147.3238213

Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. 2002. A system and language for building system-specific,
static analyses. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation

(Berlin, Germany) (PLDI ’02). Association for Computing Machinery, New York, NY, USA, 69–82. https://doi.org/10.
1145/512529.512539

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

https://doi.org/10.1145/1094811.1094839
https://doi.org/10.3166/jancl.19.403-429
https://arxiv.org/abs/https://doi.org/10.3166/jancl.19.403-429
https://doi.org/10.6084/m9.figshare.27002680.v2
https://doi.org/10.1145/5397.5399
https://github.com/github/codeql
https://www.cve.org/
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1109/ASE56229.2023.00027
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/512529.512539
https://doi.org/10.1145/512529.512539

FSE108:22 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

Dongjie He, Yujiang Gui, Yaoqing Gao, and Jingling Xue. 2023. Reducing the Memory Footprint of IFDS-Based Data-Flow
Analyses using Fine-Grained Garbage Collection. In Proceedings of the 32nd ACM SIGSOFT International Symposium on

Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for Computing Machinery, New York, NY,
USA, 101–113. https://doi.org/10.1145/3597926.3598041

Dongjie He, Haofeng Li, Lei Wang, Haining Meng, Hengjie Zheng, Jie Liu, Shuangwei Hu, Lian Li, and Jingling Xue. 2019.
Performance-boosting sparsification of the ifds algorithm with applications to taint analysis. In 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE). IEEE, 267–279.
Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue. 2018. Understanding and detecting evolution-

induced compatibility issues in Android apps. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering (Montpellier, France) (ASE ’18). Association for Computing Machinery, New York, NY, USA, 167–177.
https://doi.org/10.1145/3238147.3238185

Heros. 2023. soot-oss/heros: IFDS/IDE Solver for Soot and other frameworks. Retrieved March 30, 2024 from https://github.
com/soot-oss/heros

Gerard J Holzmann. 2004. The SPIN model checker: Primer and reference manual. Vol. 1003. Addison-Wesley Reading.
Yongheng Huang, Chenghang Shi, Jie Lu, Haofeng Li, Haining Meng, and Lian Li. 2024. Detecting Broken Object-Level

Authorization Vulnerabilities in Database-Backed Applications. In Proceedings of the 2024 on ACM SIGSAC Conference on

Computer and Communications Security (Salt Lake City, UT, USA) (CCS ’24). Association for Computing Machinery, New
York, NY, USA, 2934–2948. https://doi.org/10.1145/3658644.3690227

Michael Huth and Mark Ryan. 2004. Logic in Computer Science: Modelling and reasoning about systems. Cambridge university
press.

INRIA. 2024. Coccinelle: A Program Matching and Transformation Tool for Systems Code. Retrieved March 22, 2024 from
https://coccinelle.gitlabpages.inria.fr/website/

Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: finding unpatched code clones in entire os distributions.
In 2012 IEEE Symposium on Security and Privacy. IEEE, 48–62.

Ciera Jaspan. 2008. Checking framework interactions with relationships. In Companion to the 23rd ACM SIGPLAN Conference

on Object-Oriented Programming Systems Languages and Applications (Nashville, TN, USA) (OOPSLA Companion ’08).
Association for Computing Machinery, New York, NY, USA, 901–902. https://doi.org/10.1145/1449814.1449899

Wooseok Kang, Byoungho Son, and Kihong Heo. 2022. TRACER: Signature-based Static Analysis for Detecting Recurring
Vulnerabilities. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (Los
Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New York, NY, USA, 1695–1708. https://doi.org/10.
1145/3548606.3560664

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D Ernst. 2022. Accumulation analysis. In 36th European

Conference on Object-Oriented Programming (ECOOP 2022).
Raphaël Khoury, Sylvain Hallé, and Omar Waldmann. 2016. Execution trace analysis using ltl-fo. In International Symposium

on Leveraging Applications of Formal Methods. Springer, 356–362.
Seulbae Kim and Heejo Lee. 2018. Software systems at risk: An empirical study of cloned vulnerabilities in practice.

Computers & Security 77 (2018), 720–736. https://doi.org/10.1016/j.cose.2018.02.007
Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A Scalable Approach for Vulnerable Code Clone

Discovery. In 2017 IEEE Symposium on Security and Privacy (SP). 595–614. https://doi.org/10.1109/SP.2017.62
Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden, Florian Göpfert, Felix Günther, Christian

Weinert, Daniel Demmler, et al. 2017. Cognicrypt: Supporting developers in using cryptography. In 2017 32nd IEEE/ACM

International Conference on Automated Software Engineering (ASE). IEEE, 931–936.
David Lacey, Neil D Jones, Eric Van Wyk, and Carl Christian Frederiksen. 2004. Compiler optimization correctness by

temporal logic. Higher-Order and Symbolic Computation 17 (2004), 173–206.
Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Lian Li, and Lin Gao. 2024a. Boosting the Performance of Multi-Solver IFDS

Algorithms with Flow-Sensitivity Optimizations. In 2024 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). 296–307. https://doi.org/10.1109/CGO57630.2024.10444884
Haofeng Li, Haining Meng, Hengjie Zheng, Liqing Cao, Jie Lu, Lian Li, and Lin Gao. 2021. Scaling Up the IFDS Algorithm

with Efficient Disk-Assisted Computing. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization

(CGO). 236–247. https://doi.org/10.1109/CGO51591.2021.9370311
Haofeng Li, Chenghang Shi, Jie Lu, Lian Li, and Jingling Xue. 2024b. Boosting the Performance of Alias-Aware IFDS Analysis

with CFL-Based Environment Transformers. Proc. ACM Program. Lang. 8, OOPSLA2, Article 364 (Oct. 2024), 29 pages.
https://doi.org/10.1145/3689804

Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden,
Damien Octeau, and Patrick McDaniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 280–291.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

https://doi.org/10.1145/3597926.3598041
https://doi.org/10.1145/3238147.3238185
https://github.com/soot-oss/heros
https://github.com/soot-oss/heros
https://doi.org/10.1145/3658644.3690227
https://coccinelle.gitlabpages.inria.fr/website/
https://doi.org/10.1145/1449814.1449899
https://doi.org/10.1145/3548606.3560664
https://doi.org/10.1145/3548606.3560664
https://doi.org/10.1016/j.cose.2018.02.007
https://doi.org/10.1109/SP.2017.62
https://doi.org/10.1109/CGO57630.2024.10444884
https://doi.org/10.1109/CGO51591.2021.9370311
https://doi.org/10.1145/3689804

VulPA: Detecting Semantically Recurring Vulnerabilities with Multi-object Typestate Analysis FSE108:23

Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. 2022. Path-sensitive and alias-aware typestate analysis for detecting OS
bugs. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for Computing Machinery, New York, NY, USA,
859–872. https://doi.org/10.1145/3503222.3507770

Bingchang Liu, Guozhu Meng, Wei Zou, Qi Gong, Feng Li, Min Lin, Dandan Sun, Wei Huo, and Chao Zhang. 2020. A
large-scale empirical study on vulnerability distribution within projects and the lessons learned. In Proceedings of

the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association for
Computing Machinery, New York, NY, USA, 1547–1559. https://doi.org/10.1145/3377811.3380923

Jie Lu, Haofeng Li, Chen Liu, Lian Li, and Kun Cheng. 2022. Detecting Missing-Permission-Check Vulnerabilities in
Distributed Cloud Systems. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications

Security (Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New York, NY, USA, 2145–2158.
https://doi.org/10.1145/3548606.3560589

Jeremy Morse, Lucas Cordeiro, Denis Nicole, and Bernd Fischer. 2015. Model checking LTL properties over ANSI-C programs
with bounded traces. Software & Systems Modeling 14 (2015), 65–81.

Nomair A Naeem and Ondrej Lhoták. 2008. Extending typestate analysis to multiple interacting objects. OOPSLA’08:

Proceedings of Object-Oriented Programming, Systems, Languages and Applications (2008).
Nomair A. Naeem and Ondrej Lhotak. 2008. Typestate-like analysis of multiple interacting objects. SIGPLAN Not. 43, 10

(Oct. 2008), 347–366. https://doi.org/10.1145/1449955.1449792
Nomair A Naeem, Ondřej Lhoták, and Jonathan Rodriguez. 2010. Practical extensions to the IFDS algorithm. In Compiler

Construction: 19th International Conference, CC 2010, Held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings 19. Springer, 124–144.
Yoann Padioleau, Julia L. Lawall, and Gilles Muller. 2007. SmPL: A Domain-Specific Language for Specifying Collateral

Evolutions in Linux Device Drivers. Electronic Notes in Theoretical Computer Science 166 (2007), 47–62. https://doi.org/
10.1016/j.entcs.2006.07.022 Proceedings of the ERCIM Working Group on Software Evolution (2006).

Zhiyuan Pan, Xing Hu, Xin Xia, Xian Zhan, David Lo, and Xiaohu Yang. 2024. PPT4J: Patch Presence Test for Java Binaries.
In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 1–12.

Nam H. Pham, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2010. Detection of recurring software
vulnerabilities. In Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering (Antwerp,
Belgium) (ASE ’10). Association for Computing Machinery, New York, NY, USA, 447–456. https://doi.org/10.1145/
1858996.1859089

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. 2012. Statically checking API protocol conformance
with mined multi-object specifications. In 2012 34th International Conference on Software Engineering (ICSE). 925–935.
https://doi.org/10.1109/ICSE.2012.6227127

Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz, Murat Kantarcioglu, and Danfeng Yao.
2019. Cryptoguard: High precision detection of cryptographic vulnerabilities in massive-sized java projects. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 2455–2472.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco,
California, USA) (POPL ’95). Association for Computing Machinery, New York, NY, USA, 49–61. https://doi.org/10.1145/
199448.199462

Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural dataflow analysis with applications to constant
propagation. Theoretical Computer Science 167, 1 (1996), 131–170. https://doi.org/10.1016/0304-3975(96)00072-2

Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V Lopes. 2016. Sourcerercc: Scaling code
clone detection to big-code. In Proceedings of the 38th international conference on software engineering. 1157–1168.

David A. Schmidt. 1998. Data flow analysis is model checking of abstract interpretations. In Proceedings of the 25th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’98).
Association for Computing Machinery, New York, NY, USA, 38–48. https://doi.org/10.1145/268946.268950

Youkun Shi, Yuan Zhang, Tianhao Bai, Lei Zhang, Xin Tan, and Min Yang. 2024. RecurScan: Detecting Recurring Vulnera-
bilities in PHP Web Applications. In Proceedings of the ACM Web Conference 2024 (Singapore, Singapore) (WWW ’24).
Association for Computing Machinery, New York, NY, USA, 1746–1755. https://doi.org/10.1145/3589334.3645530

Larry Singleton, Rui Zhao, Myoungkyu Song, and Harvey Siy. 2020. Cryptotutor: Teaching secure coding practices through
misuse pattern detection. In Proceedings of the 21st Annual Conference on Information Technology Education. 403–408.

Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2011. Rolecast: finding missing security checks when you do not
know what checks are. In Proceedings of the 2011 ACM international conference on Object oriented programming systems

languages and applications. 1069–1084.
Fu Song and Tayssir Touili. 2014. Pushdown model checking for malware detection. International Journal on Software Tools

for Technology Transfer 16, 2 (2014), 147–173.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

https://doi.org/10.1145/3503222.3507770
https://doi.org/10.1145/3377811.3380923
https://doi.org/10.1145/3548606.3560589
https://doi.org/10.1145/1449955.1449792
https://doi.org/10.1016/j.entcs.2006.07.022
https://doi.org/10.1016/j.entcs.2006.07.022
https://doi.org/10.1145/1858996.1859089
https://doi.org/10.1145/1858996.1859089
https://doi.org/10.1109/ICSE.2012.6227127
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1145/268946.268950
https://doi.org/10.1145/3589334.3645530

FSE108:24 Liqing Cao, Haofeng Li, Chenghang Shi, Jie Lu, Haining Meng, Lian Li, and Jingling Xue

Soot. 2024. soot-oss/soot: Soot - A Java optimization framewor. RetrievedMarch 30, 2024 from https://github.com/soot-oss/soot
Johannes Späth, Karim Ali, and Eric Bodden. 2017. Ide al: Efficient and precise alias-aware dataflow analysis. Proceedings of

the ACM on Programming Languages 1, OOPSLA (2017), 1–27.
Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-driven flow-and context-

sensitive pointer analysis for java. In 30th European Conference on Object-Oriented Programming (ECOOP 2016). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

Topl. 2024. Topl | Infer. Retrieved February 8, 2025 from https://fbinfer.com/docs/1.1.0/checker-topl
Moshe Y Vardi and PierreWolper. 1986. An automata-theoretic approach to automatic program verification. In 1st Symposium

in Logic in Computer Science (LICS). IEEE Computer Society.
WALA. 2024. wala/WALA: T.J. Watson Libraries for Analysis, with frontends for Java, Android, and JavaScript, and may

common static program analyses. Retrieved May 28, 2024 from https://github.com/wala/WALA
Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taintmini: Detecting flow of sensitive data in

mini-programs with static taint analysis. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, 932–944.

Pierre Wolper. 1983. Temporal logic can be more expressive. Information and control 56, 1-2 (1983), 72–99.
Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li, Binghong Liu, Yang Liu, Wei Huo, Wei Zou,

et al. 2020. {MVP}: Detecting vulnerabilities using {Patch-Enhanced} vulnerability signatures. In 29th USENIX Security

Symposium (USENIX Security 20). 1165–1182.
Zifan Xie, MingWen, Haoxiang Jia, Xiaochen Guo, Xiaotong Huang, Deqing Zou, and Hai Jin. 2023. Precise and efficient patch

presence test for android applications against code obfuscation. In Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis. 347–359.
Congying Xu, Bihuan Chen, Chenhao Lu, Kaifeng Huang, Xin Peng, and Yang Liu. 2022. Tracking patches for open source

software vulnerabilities. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering. 860–871.
Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2017. Machine-Learning-Guided Typestate Analysis for Static Use-After-

Free Detection. In Proceedings of the 33rd Annual Computer Security Applications Conference (Orlando, FL, USA) (ACSAC
’17). Association for Computing Machinery, New York, NY, USA, 42–54. https://doi.org/10.1145/3134600.3134620

Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-Temporal Context Reduction: A Pointer-Analysis-Based
Static Approach for Detecting Use-After-Free Vulnerabilities. In 2018 IEEE/ACM 40th International Conference on Software

Engineering (ICSE). 327–337. https://doi.org/10.1145/3180155.3180178
Project Zero. 2021. Déjà vu-lnerability. https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html
Qi Zhan, Xing Hu, Zhiyang Li, Xin Xia, David Lo, and Shanping Li. 2024. PS3: Precise Patch Presence Test based on Semantic

Symbolic Signature. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 1–12.
Ying Zhang, Ya Xiao, Md Mahir Asef Kabir, Danfeng Yao, and Na Meng. 2022. Example-based vulnerability detection and

repair in java code. In Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension. 190–201.

Received 2024-09-12; accepted 2025-04-01

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE108. Publication date: July 2025.

https://github.com/soot-oss/soot
https://fbinfer.com/docs/1.1.0/checker-topl
https://github.com/wala/WALA
https://doi.org/10.1145/3134600.3134620
https://doi.org/10.1145/3180155.3180178
https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html

	Abstract
	1 Introduction
	2 The VulPA Approach
	2.1 Specifying Vulnerability Patterns in VPDL
	2.2 Detecting VPDL Patterns

	3 The VPDL Language
	3.1 Syntax
	3.2 Semantics
	3.3 Example

	4 The Vulnerability Detection Algorithm
	4.1 Translate LTL to Automaton
	4.2 Multi-object Typestate Analysis
	4.3 IFDS-Based Implementation

	5 Evaluation
	5.1 Experiment Setup
	5.2 RQ1: Ability to Detect Existing Vulnerabilities
	5.3 RQ2: Ability to Detect New Vulnerabilities
	5.4 RQ3: Time Efficiency in Vulnerability Detection
	5.5 Case Studies
	5.6 Disscussion

	6 Related Work
	6.1 Recurring Vulnerability Detection
	6.2 Model Checking
	6.3 IFDS/IDE
	6.4 Typestate Analysis

	7 Conclusion
	8 Data-Availability Statement
	Acknowledgments
	References

