
Fast Client-Driven CFL-Reachability via

Regularization-Based Graph Simplification

CHENGHANG SHI, Institute of Computing Technology, CAS, China and University of Chinese Academy
of Sciences, China
DONGJIE HE, Chongqing University, China
HAOFENG LI

∗
, Institute of Computing Technology, CAS, China

JIE LU, Institute of Computing Technology, CAS, China
LIAN LI

∗
, Institute of Computing Technology, CAS, China, University of Chinese Academy of Sciences,

China, and Zhongguancun Laboratory, China
JINGLING XUE, University of New South Wales, Australia

Context-free language (CFL) reachability is a critical framework for various program analyses, widely adopted
despite its computational challenges due to cubic or near-cubic time complexity. This often leads to significant
performance degradation in client applications. Notably, in real-world scenarios, clients typically require
reachability information only for specific source-to-sink pairs, offering opportunities for targeted optimization.

We introduce MoYe, an effective regularization-based graph simplification technique designed to enhance
the performance of client-driven CFL-reachability analyses by pruning non-contributing edges—those that
do not participate in any specified CFL-reachable paths. MoYe employs a regular approximation to ensure
exact reachability results for all designated node pairs and operates linearly with respect to the number of
edges in the graph. This lightweight efficiency makes MoYe a valuable pre-processing step that substantially
reduces both computational time and memory requirements for CFL-reachability analysis, outperforming a
recent leading graph simplification approach. Our evaluations with two prominent CFL-reachability client
applications demonstrate that MoYe can substantially improve performance and reduce resource consumption.

CCS Concepts: • Theory of computation→ Grammars and context-free languages.

Additional Key Words and Phrases: CFL-Reachability, Graph Simplification

ACM Reference Format:

Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue. 2025. Fast Client-Driven CFL-
Reachability via Regularization-Based Graph Simplification. Proc. ACM Program. Lang. 9, OOPSLA2, Article 287
(October 2025), 28 pages. https://doi.org/10.1145/3763065

1 Introduction

CFL-reachability [Reps 1998; Yannakakis 1990] is a foundational framework used to formalize a
wide array of program analysis tasks, including pointer analysis [He et al. 2023; Lu and Xue 2019;
Sridharan et al. 2005], inter-procedural data flow analysis [Arzt et al. 2014; Reps et al. 1995], shape
∗Corresponding authors

Authors’ Contact Information: Chenghang Shi, Institute of Computing Technology, CAS, Beijing, China and University of
Chinese Academy of Sciences, Beijing, China, shichenghang21s@ict.ac.cn; Dongjie He, Chongqing University, Chongqing,
China, dongjiehe@cqu.edu.cn; Haofeng Li, Institute of Computing Technology, CAS, Beijing, China, lihaofeng@ict.ac.cn;
Jie Lu, Institute of Computing Technology, CAS, Beijing, China, lujie@ict.ac.cn; Lian Li, Institute of Computing Technology,
CAS, Beijing, China and University of Chinese Academy of Sciences, Beijing, China and Zhongguancun Laboratory, Beijing,
China, lianli@ict.ac.cn; Jingling Xue, University of New South Wales, Sydney, Australia, j.xue@unsw.edu.au.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART287
https://doi.org/10.1145/3763065

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

https://orcid.org/0009-0003-3055-8929
https://orcid.org/0000-0003-0304-8942
https://orcid.org/0009-0008-0931-8767
https://orcid.org/0000-0002-4162-0404
https://orcid.org/0000-0002-4476-0541
https://orcid.org/0000-0003-0380-3506
https://doi.org/10.1145/3763065
https://orcid.org/0009-0003-3055-8929
https://orcid.org/0000-0003-0304-8942
https://orcid.org/0009-0008-0931-8767
https://orcid.org/0000-0002-4162-0404
https://orcid.org/0000-0002-4476-0541
https://orcid.org/0000-0003-0380-3506
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763065
https://www.acm.org/publications/policies/artifact-review-and-badging-current

287:2 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

analysis [Reps 1998], and program slicing [Li et al. 2016; Reps et al. 1994; Sridharan et al. 2007].
This approach models program analysis by utilizing a context-free language 𝐿 and represents the
analyzed program as an edge-labeled graph𝐺 . It determines if, for every potential source-to-sink
pair, there exists a path 𝑝 in 𝐺 where the sequence of labels along 𝑝 is a string in 𝐿.
CFL-reachability is computationally demanding, exhibiting classic cubic time complexity of

𝑂 (|𝑉 |3), where 𝑉 denotes the node set of 𝐺 . Although a slightly subcubic algorithm with a com-
plexity of𝑂 (|𝑉 |3/log(|𝑉 |)) exists [Chaudhuri 2008], achieving truly subcubic bounds of𝑂 (|𝑉 |3−𝜀),
where 𝜀 > 0, for general CFL-reachability is notably challenging [Melski and Reps 2000] and contin-
ues to be an unresolved problem [Chatterjee et al. 2017]. Despite the introduction of several recent
acceleration techniques [Lei et al. 2022a; Shi et al. 2023, 2022; Wang et al. 2017], the performance
gains provided still fall short of the needs of client applications that rely on CFL-reachability.
In this paper, we introduce MoYe, a novel approach to optimizing CFL-reachability analysis

for client-specific applications. Our primary insight is that clients often need specific source-to-
sink reachability information, rather than all possible pairs, which traditional CFL-reachability
algorithms [Lei et al. 2022a; Shi et al. 2023, 2022; Zheng and Rugina 2008] process, causing consid-
erable inefficiencies by including numerous extraneous paths. Conventional graph simplification
methods [Hardekopf and Lin 2007; Rountev and Chandra 2000], although effective, still retain
unnecessary reachability information. A recent state-of-the-art technique, Gf [Lei et al. 2023b],
improves efficiency by contracting trivial edges—those irrelevant to any reachable paths—and
merging their incident nodes. Diverging from these methods, MoYe exclusively focuses on pruning
irrelevant paths, substantially reducing unnecessary computations and enhancing performance.
To achieve this, MoYe uses a unique graph simplification strategy to enhance efficiency. Dur-

ing pre-processing for client-driven CFL-reachability, it removes non-contributing (or useless)
edges—those not part of any source-to-sink paths specified by clients. CFL-reachability algorithms
then analyze this simplified graph to determine reachability. By eliminating only these edges, MoYe
improves analysis efficiency while maintaining result accuracy for clients.

Addressing the challenges of crafting an effective yet lightweight graph simplification technique,
we employ a regular approximation, 𝐿′, of the context-free language 𝐿. This approximation covers
all path strings of 𝐿 and strategically targets the removal of non-contributing edges. By leveraging
the relationship between 𝐿′-reachability and the transitions of its associated finite automaton,
we have developed a novel regularization-based graph simplification algorithm. Operating in
linear time relative to the number of edges in the input graph 𝐺 , this algorithm adeptly eliminates
non-contributing edges, ensuring both efficiency and effectiveness in addressing pre-analysis tasks.

We have developed MoYe, a standalone tool that employs our regularization-based graph simpli-
fication technique for two significant client analyses: points-to analysis in Java and alias analysis in
C/C++. Our extensive testing shows that MoYe significantly speeds up CFL-reachability resolution
by removing many non-essential edges, outperforming Gf [Lei et al. 2023b], the current leading
method. In points-to analysis, MoYe achieves node and edge reductions of 63.82% and 70.81%,
respectively, resulting in a speedup of 6.99× and a memory reduction of 71.65%. Similarly, in alias
analysis, it reduces 59.14% of nodes and 65.36% of edges, leading to a speedup of 15.72× and a
memory reduction of 80.95%. In comparison, Gf achieves node and edge reductions of 40.22%
(39.84%) and 24.44% (36.89%) respectively in these analyses, with speedups of 4.36× (4.21×) and
memory reductions of 56.7% (44.28%). Additionally, integrating MoYe with Gf enhances reductions
and performance gains in both analyses. Our experiments in a batch setting also confirm that MoYe
further enhances the performance of CFL-reachability analysis.
MoYe represents the first regularization-based graph simplification approach specifically de-

signed to enhance CFL-reachability analysis by removing non-contributing edges related to client-
specified source-to-sink pairs. In summary, this paper presents the following principal contributions:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:3

• We introduceMoYe, a novel regularization-based graph simplification approach that enhances
CFL-reachability analysis by selectively removing non-contributing edges from the input
graph of a program, while delivering exact reachability results.

• We develop MoYe as a lightweight regularization-based pre-analysis technique that operates
efficiently in linear time relative to the input graph size.

• We implement MoYe as a standalone tool and validate its utility through its application to
two common CFL-reachability client analyses, covering both Java and C/C++ programs.

• We demonstrate that MoYe significantly reduces both computational time and memory
overhead in CFL-reachability analysis by minimizing graph size through extensive testing,
outperforming the current leading graph simplification technique, Gf [Lei et al. 2023b]. Addi-
tionally, we demonstrate that MoYe complements existing simplification methods, especially
when combined with Gf, achieving even greater performance enhancements.

The rest of this paper is structured as follows. Section 2 provides background on CFL-reachability
and introduces a motivating example. Section 3 outlines the specific problem this paper addresses.
Section 4 elaborates on our regularization-based approach for identifying contributing edges in
client-specified source-to-sink CFL-reachability. Section 5 details our regularization-based graph
simplification algorithm. Section 6 presents our evaluation results. Section 7 reviews related work
in the field. Section 8 concludes the paper and explores potential directions for future research.

2 Background and Motivation

We start with a review of CFL-reachability (Sections 2.1 and 2.2) and present an illustrative example
(Section 2.3) that highlights our research motivation. In the final section on graph simplification
(Section 2.4), we discuss prior work and introduce our regularization-based approach, emphasizing
the challenges addressed and the innovative solutions proposed.

2.1 Context-Free Language

A context-free language (CFL) 𝐿 is defined by the strings generated from a context-free grammar
(CFG). A CFG is characterized by a 4-tuple (𝑁, Σ, 𝑃, 𝑆), where 𝑁 and Σ are disjoint finite sets of
nonterminals and terminals, respectively, with Σ also referred to as the alphabet of the language.
The set 𝑃 contains a finite number of production rules, each formatted as 𝑁 → (𝑁 ∪ Σ)∗. Here,
𝑆 ∈ 𝑁 serves as the start (nonterminal) symbol of the grammar.

Following [Mohri and Nederhof 2001], we define the productions of𝐴 as those productions whose
left-hand side is 𝐴 ∈ 𝑁 . For any subset 𝑁 ′ ⊆ 𝑁 , the productions of 𝑁 ′ are defined as the union of
all rules whose left-hand sides belong to any 𝐴 ∈ 𝑁 ′.
A grammar is left-linear (right-linear) if all its productions in 𝑃 are of the form 𝐴 → 𝐵 𝜔

(𝐴 → 𝜔 𝐵) or 𝐴 → 𝜔 , where 𝐴, 𝐵 ∈ 𝑁 and 𝜔 ∈ Σ∗. A context-free language 𝐿 is considered a
regular language if its corresponding CFG is either left-linear or right-linear.

2.2 CFL-Reachability

CFL-reachability is a widely used framework for various program analyses [Reps 1998]. In this
framework, a CFG is used to formalize an analysis problem, and the program being analyzed is
represented as an edge-labeled graph 𝐺 = (𝑉 , 𝐸), with 𝑉 and 𝐸 denoting the sets of nodes and
edges, respectively. Each edge in 𝐺 is labeled with a terminal 𝑡 ∈ Σ.
Path Strings. Consider a path 𝑝 in 𝐺 , represented as 𝑣0

𝑡1−→ 𝑣1
𝑡2−→ . . .

𝑡𝑘−→ 𝑣𝑘 , where each 𝑡𝑖 for
𝑖 ∈ [1, 𝑘] is a terminal in Σ. The realized path string, 𝑅(𝑝), is the sequence obtained by concatenating
the labels of the edges along the path, i.e., 𝑅(𝑝) = 𝑡1 . . . 𝑡𝑘 .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:4 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

1 s = &t;
2 s = &r;
3 z = r;
4 y = &r;
5 s = r;
6 x = *y;
7 ... = *x+2;
8 *s = ...;
9 ... = *x+2;

(a) Code snippet

𝑀 → 𝑑 𝑉 𝑑

𝑉 → 𝐴 𝑉 | 𝑉 𝐴

| 𝑀 | 𝜖
𝐴 → 𝑎 𝑀 | 𝑎
𝐴 → 𝑀 𝑎 | 𝑎

(b) Context-free grammar

*x

x *y

y

*z

z r

&r

*s

s

t

&t

𝑑

𝑑

𝑑𝑑

𝑑

𝑑𝑑

𝑑

𝑑𝑑

𝑑

𝑑

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎
𝑎

𝑎

𝑎

𝑎

(c) Input graph 𝐺

𝑞0 𝑞1

𝑞2

𝑞3

𝑑

𝑎, 𝑑

𝑑
𝑑

𝑎𝑎𝑑

𝑎

𝑎

𝑑

(d) Deterministic finite automaton

*x

x *y

y

r

&r

*s

s

𝑑
𝑎

𝑑
𝑎

𝑑

𝑎

𝑎

𝑑

(e) Simplified input graph 𝐺 ′
by

MoYe

*x

{x,*y}

{y,&r}

r

*s

s

𝑑

𝑑 𝑑

𝑎

𝑎

𝑑

(f) Simplified input graph by

combing MoYe and Gf

Fig. 1. A motivating example.

Reachable Paths/Pairs. A node 𝑣 is said to be 𝑋 -reachable from a node 𝑢 if there exists a
path 𝑝 from 𝑢 to 𝑣 in 𝐺 such that the path string 𝑅(𝑝) belongs to the language generated by the
nonterminal 𝑋 in the grammar. Formally, this is expressed as 𝑋 →∗ 𝑅(𝑝), where →∗ indicates
zero or more applications of productions from 𝑃 . Such a path, referred to as an 𝑋 -path, is depicted
as a summary edge in 𝐺 , labeled by 𝑋 to explicitly encode the reachability information. In the
special case when 𝑋 is the start symbol (i.e., 𝑋 = 𝑆), node 𝑣 is described as 𝐿-reachable from node 𝑢,
with the path 𝑝 termed an 𝐿-path. Consequently, the pair (𝑢, 𝑣) is defined as an 𝐿-reachable pair.
A summary edge can be derived multiple times through distinct reachable paths, with each path
corresponding to a distinct derivation check [Lei et al. 2022a; Shi et al. 2023].

Essentially, CFL-reachability algorithms [Lei et al. 2022a; Shi et al. 2023, 2022] iteratively discover
new reachable paths and generate summary edges in 𝐺 . This process continues until no further
paths can be discovered, indicating that a fixed point has been reached. The overall time complexity
of this process is (sub)cubic relative to |𝑉 | [Chaudhuri 2008].

2.3 A Motivating Example

Consider the code snippet in Figure 1a as part of an available expression analysis. This analysis
determines whether the expression *x+2 at line 9 can reuse the value computed at line 7 or if it
requires recomputation. The reusability of *x+2 hinges on whether *x remains unchanged from
line 7 to line 9. A crucial alias query then emerges: Are the memory locations *x and *s aliased?
If they are, the assignment to *s at line 8 might modify *x, thereby rendering the expression *x+2,
previously computed at line 7, unavailable at line 9.

This alias query can be addressed using CFL-reachability-based alias analysis [Zheng and Rugina
2008]. Figure 1b illustrates the grammar defining alias relations between program expressions.
In this grammar, the terminals 𝑑 , 𝑎, and 𝜖 symbolize pointer dereferencing, assignment, and the
empty string, respectively. The nonterminals include 𝑀 (memory aliasing), indicating expressions
that may refer to the same memory location; 𝑉 (value aliasing), signifying expressions that may

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:5

Table 1. Step-by-step derivation of𝑀 →∗ 𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝑑 for the motivating example in Figure 1.

Step Current String Production

0 𝑀 𝑀 → 𝑑 𝑉 𝑑

1 𝑑 𝑉 𝑑 𝑉 → 𝐴 𝑉

2 𝑑 𝐴 𝑉 𝑑 𝐴 → 𝑎

3 𝑑 𝑎 𝑉 𝑑 𝑉 → 𝑉 𝐴

4 𝑑 𝑎 𝑉 𝐴 𝑑 𝑉 → 𝑀

5 𝑑 𝑎 𝑀 𝐴 𝑑 𝑀 → 𝑑 𝑉 𝑑

6 𝑑 𝑎 𝑑 𝑉 𝑑 𝐴 𝑑 𝑉 → 𝐴 𝑉

7 𝑑 𝑎 𝑑 𝐴 𝑉 𝑑 𝐴 𝑑 𝐴 → 𝑎

8 𝑑 𝑎 𝑑 𝑎 𝑉 𝑑 𝐴 𝑑 𝑉 → 𝜖

9 𝑑 𝑎 𝑑 𝑎 𝑑 𝐴 𝑑 𝐴 → 𝑎

10 𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝑑

evaluate to a common pointer; and 𝐴, which captures both direct (𝐴 → 𝑎) and indirect (𝐴 → 𝑎 𝑀)
assignments. Additionally, for any symbol 𝑋 , 𝑋 denotes the inverse relation of 𝑋 . For additional
details about this grammar, please refer to [Zheng and Rugina 2008].
Figure 1c displays the input graph 𝐺 extracted from the code snippet in Figure 1a, where each

node corresponds to an expression in the code. This graph consists of four types of edges: 𝑎-edges,
𝑎-edges, 𝑑-edges and 𝑑-edges. The alias query, as discussed earlier, is resolved by determining the
reachability from the source node *x to the sink node *s in 𝐺 .

In this example, *x and *s are memory aliases because the following path exists in 𝐺 :

*x
𝑑−→ x

𝑎−→ *y
𝑑−→ y

𝑎−→ &r
𝑑−→ r

𝑎−→ s
𝑑−→ *s (1)

The corresponding path string 𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝑑 can be derived from the nonterminal𝑀 , as shown in
Table 1, indicating that *s is𝑀-reachable from *x. Consequently, in Figure 1a, the assignment at
line 8 invalidates the availability of the expression *x+2 at line 9.

2.4 Graph Simplification

We aim to develop a graph simplification technique that accelerates CFL-reachability analysis by
reducing the input graph size. As shown in Figure 1, our alias analysis query requires establishing
reachability only between *x and *s. Therefore, any simplification that maintains this specific
reachability can effectively optimize the analysis for this client query. Below, we will review prior
work and elaborate on our approach, focusing on the challenges and our innovative solution.

Prior Work. Existing graph simplification techniques often retain much irrelevant reachability
information, leading to only modest reductions in graph size. For instance, the classic cycle elimina-
tion technique [Hardekopf and Lin 2007] does not apply in our motivating example because it may
lead to missing 𝐴-edges produced by the production 𝐴 → 𝑎 𝑀 , which relies on transitive 𝑎-edges,
potentially compromising analysis soundness [Xu et al. 2024]. Moreover, 𝑎-edges do not form cycles
in𝐺 . A recent method known as Graph Folding (Gf) [Lei et al. 2023b], guided by recursive state
machines, identifies foldable adjacent nodes by analyzing their incoming and outgoing edges. Adja-
cent node pairs are then merged, and all connecting edges considered trivial—primarily transitive
edges in practical applications—are removed, since their contraction preserves CFL-reachability. In
Figure 1, Gf contracts only three 𝑎-edges (and their reverse edges): *y

𝑎−→ x, &r
𝑎−→ y, and r

𝑎−→ z,
achieving a 25% reduction in nodes and 25% reduction in edges. However, Gf cannot contract
r

𝑎−→ s, &r
𝑎−→ s, and &t

𝑎−→ s due to the multiple incoming 𝑎-edges at s.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:6 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

Our Work. Unlike existing graph simplification techniques [Hardekopf and Lin 2007; Lei et al.
2023b], MoYe focuses on simplifying the input graph 𝐺 by preserving primarily the reachability
information relevant to client needs. This strategy allows for the removal of many edges that do
not contribute to the specific CFL-reachability paths of interest, though some redundancy may still
remain. Figure 1e illustrates the resulting simplified graph 𝐺 ′, which preserves those edges that
form the 𝐿-reachable path from *x to *s (Equation (1)), removing 16 out 17 non-contributing edges
for this particular example. However, the edge &r

𝑎−→ s is conservatively retained by MoYe due
to its approximation approach. Utilizing the simplified𝐺 ′ instead of the original𝐺 substantially
enhances CFL-reachability analysis efficiency, applicable to both whole-program and demand-
driven scenarios. For instance, an alias query starting at *x in𝐺 would unnecessarily traverse to
*z, whereas in𝐺 ′, with *z, z, and associated edges removed, such irrelevant paths are eliminated.

Challenges. Designing MoYe as a pre-analysis presents two key challenges: maximizing the
removal of non-contributing edges to minimize the computational and memory overhead of
CFL-reachability analysis while ensuring the pre-analysis remains lightweight. Ideally, we would
precisely identify contributing edges and remove all others. A naive approach would compute all
CFL-reachable paths and mark non-contributing edges, but this would defeat the purpose, as it
requires solving CFL-reachability upfront, incurring significant computational costs.
Key Idea. MoYe over-approximates the context-free language in Figure 1b with a regular lan-

guage, which is then converted into a deterministic finite automaton (DFA)D, as shown in Figure 1d.
By analyzing the DFA’s transition rules, it over-approximately identifies contributing edges and
removes non-contributing edges from 𝐺 under-approximately. The DFA has a small number of
states, comparable to the nonterminals in the original CFG, ensuring efficient computation.

Let us summarize four key advantages offered by MoYe in the context of our motivating example:

(1) Effectiveness. MoYe efficiently removes all non-contributing edges, achieving a reduction
of 33.33% (4 out of 12) of nodes and 66.67% (16 out of 24) of edges, as shown in Figure 1e.
Nodes such as z and &t are automatically removed as they no longer have incident edges after
simplification. In contrast, Gf [Lei et al. 2023b] only eliminates only 25% of nodes and 25%
of edges through edge contraction. Notably, in the evaluation presented in Section 6, MoYe
consistently outperforms Gf in speeding up CFL-reachability analysis, often significantly.

(2) Preservation. MoYe simplifies the input graph𝐺 into𝐺 ′ while preserving the reachability
needed for the specific alias query considered. The𝑀-path from *x to *s given in Equation (1)
is retained in 𝐺 ′ (Figure 1e), ensuring the reachability results remain unchanged.

(3) Efficiency. MoYe operates with a time complexity linear to the number of edges in the input
graph 𝐺 , compared to the cubic complexity of CFL-reachability algorithms, making it highly
efficient as a pre-analysis step to accelerate these algorithms.

(4) Compatibility. MoYe is compatible with existing methods like Gf [Lei et al. 2023b], en-
hancing graph simplification. Gf can contract contributing edges (e.g., x

𝑎−→ *y, y
𝑎−→ &r) to

shorten paths, while MoYe can remove non-contributing edges that Gf cannot contract to
prune irrelevant paths. Combining both methods, as shown in Figure 1f, results in a reduction
of nodes by 50% and edges by 75%, surpassing the performance of using either technique
alone. This synergy will be further analyzed in Section 6.

3 Problem Formulation

In this work, we focus on addressing client-driven CFL-reachability problems, in which the source
and sink sets are defined by client applications, as formally stated below.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:7

Definition 3.1 (Client-Driven CFL-Reachability Problem). An instance of a client-driven CFL-
reachability problem is represented as a quadruple (𝐿,𝐺,𝑉src,𝑉snk), where 𝐿 is a context-free lan-
guage, 𝐺 is an edge-labeled graph, and 𝑉src ⊆ 𝑉 and 𝑉snk ⊆ 𝑉 are the sets of source and sink nodes
specified by a client. The goal is to compute all 𝐿-reachable node pairs (𝑢, 𝑣) ∈ 𝑉src ×𝑉snk in 𝐺 .

This scenario is typical in real-world program analysis tools, where queries are often processed in
batches [Vedurada andNandivada 2020]. For instance, in pointer analysis performed for constructing
a call graph in a Java program, only the points-to sets of pointers that act as base variables for
virtual invocation sites in the program are required.

Given a specific client analysis, we can formally define the “usefulness” of an edge in 𝐺 by
determining whether it contributes to particular source-to-sink reachable paths.

Definition 3.2 (𝐿-Contributing Edges). Let 𝐼 = (𝐿,𝐺,𝑉src,𝑉snk) be an instance of a client-driven
CFL-reachability problem. An edge 𝑢

𝑡−→ 𝑣 ∈ 𝐺 is defined as an 𝐿-contributing edge if and only if
there exists an 𝐿-reachable path 𝑣src → · · · → 𝑢

𝑡−→ 𝑣 → · · · → 𝑣snk in 𝐺 , where 𝑣src ∈ 𝑉src and
𝑣snk ∈ 𝑉snk. If no such path exists, the edge is classified as a non-contributing edge of 𝐼 .

Therefore, not all edges in 𝐺 are necessary for calculating the desired 𝐿-reachable pairs. By
removing non-contributing edges, we can improve the performance of CFL-reachability analysis
on a simplified graph 𝐺 ′, while maintaining exactly the same reachability results for clients.

Example 3.3. Revisiting our motivating example in Figure 1, the edges in the path 𝑝 in Equation (1)
are contributing edges, as they form the 𝑀-path from the source node *x to the sink node *s.
However, the remaining edges are non-contributing. Although there is an𝑀-path from *x to *z, it
is irrelevant to the specific alias analysis considered.

We formulate our graph simplification problem as follows:

Given an instance (𝐿,𝐺,𝑉src,𝑉snk) of a client-driven CFL-reachability problem, the goal is to
produce a simplified graph 𝐺 ′ by removing non-contributing edges from 𝐺 .

The technique proposed in this paper can be used as a pre-processing step for any client-driven
CFL-reachability problem, whether applied in a demand-driven manner [Shi et al. 2022; Sridharan
et al. 2005; Zheng and Rugina 2008] or for all-pairs reachability [Lei et al. 2022a; Shi et al. 2023].

4 Identifying 𝐿-Contributing Edges

Given (𝐿,𝐺,𝑉src,𝑉snk), we over-approximately identify 𝐿-contributing edges by first regularizing 𝐿
into 𝐿′ (Section 4.1), and then determining 𝐿′-contributing edges for𝑉src and𝑉snk in𝐺 (Section 4.2).

4.1 Regularizing 𝐿 to 𝐿′

We first introduce a standard regular approximation technique for a CFL (Section 4.1.1) and then
explain how to use it to soundly over-approximate the set of 𝐿-contributing edges (Section 4.1.2).

4.1.1 MN-Transformation. This represents a simple yet effective algorithm for converting a CFL 𝐿

into a regular language 𝐿′ [Mohri and Nederhof 2001].
Given a CFG (𝑁, Σ, 𝑃, 𝑆), let R be the relation defined on its nonterminals 𝐴, 𝐵 ∈ 𝑁 :

𝐴 R 𝐵 ⇔ (∃ 𝛼, 𝛽 ∈ (Σ ∪ 𝑁)∗, 𝐴 →∗ 𝛼𝐵𝛽) ∧ (∃ 𝛼, 𝛽 ∈ (Σ ∪ 𝑁)∗, 𝐵 →∗ 𝛼𝐴𝛽)
Intuitively, R defines an equivalence relation that partitions the set 𝑁 of nonterminals into subsets
of mutually recursive nonterminals. For each partition P , two steps are applied to convert each
production into right-linear form if its productions are not all left-linear or right-linear:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:8 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

𝑀 → 𝑑 𝑉 𝑀 ′ → 𝑉 ′ | 𝐴′ | 𝑎 𝐴′ | 𝜖
𝑉 → 𝐴 | 𝑀 | 𝑉 ′ 𝑉 ′ → 𝑑 𝑀 ′ | 𝐴
𝐴 → 𝑎 𝑀 | 𝑎 𝐴′ 𝐴′ → 𝑉 ′

𝐴 → 𝑀 | 𝑎 𝐴′ 𝐴′ → 𝑉

Fig. 2. The regular grammar derived from the context-free grammar given in Figure 1b.

(1) Introduce new nonterminal symbols. For each nonterminal 𝐴 ∈ P , introduce a new nontermi-
nal 𝐴′ ∈ 𝑁 , and add the 𝜖-production 𝐴′ → 𝜖 to the grammar.

(2) Replace productions. For each production of the form 𝐴 → 𝛼0𝐵1𝛼1𝐵2𝛼2 . . . 𝐵𝑚𝛼𝑚 , where
𝐵1, . . . , 𝐵𝑚 ∈ P , 𝛼0, . . . , 𝛼𝑚 ∈ (Σ ∪ (𝑁 − P))∗, and𝑚 ≥ 0, replace it with:

𝐴 → 𝛼0𝐵1

𝐵′
1 → 𝛼1𝐵2

. . .

𝐵′
𝑚−1 → 𝛼𝑚−1𝐵𝑚

𝐵′
𝑚 → 𝛼𝑚𝐴

′

In the case of𝑚 = 0 (where the production is 𝐴 → 𝛼0), replace it with 𝐴 → 𝛼0𝐴
′.

Strongly regular grammars generate regular languages and can be converted into equivalent
finite automata using the standard algorithm outlined in [Mohri and Nederhof 2001] and further
detailed in [Nederhof 2000]. Strongly regular grammars are characterized by productions within
each partition P being exclusively left-linear or right-linear. When determining the linearity of a
production in P , nonterminals not within P are treated as terminals.
By construction, 𝐿′ is a superset of 𝐿, meaning any string derivable in 𝐿 is also derivable in 𝐿′.

For each nonterminal 𝑋 in 𝐿, at most one new nonterminal 𝑋 ′ is added to 𝐿′, where 𝑋 and 𝑋 ′

represent the start and end of string recognition generated by 𝑋 in 𝐿. This ensures that the number
of nonterminals in 𝐿′ is at most double that of 𝐿, which is beneficial in practice.

As an optimization, Step (1) can be refined by adding the 𝜖-production𝐴′ → 𝜖 only when𝐴 ∈ P
is directly reachable from another set of mutually recursive nonterminals P ′ [Mohri and Nederhof
2001]. In this case,P ′ usesP to generate strings in the language of𝐴. This refinement ensures that
P begins with 𝐴 and concludes with the production 𝐴′ → 𝜖 , effectively preventing undesirable
strings from being introduced into the transformed grammar.

Example 4.1. In Figure 1b, the CFG contains a single partition of mutually recursive nonterminals,
{𝑀,𝑉 ,𝐴,𝐴}. The corresponding regular grammar obtained via the MN-transformation is shown
in Figure 2. Since we focus on the memory alias relation in this example, 𝑀 is the start symbol.
With the refinement for Step (1) mentioned above, only 𝑀 ′ → 𝜖 is introduced in Step (1) during
the MN-transformation. This ensures that string generation terminates exclusively with𝑀 ′ → 𝜖 .
For the𝑀-path given in Equation (1), denoted here as 𝑝 , the path string 𝑅(𝑝) can obviously be

derived from this regular grammar as follows: 𝑀 → 𝑑 𝑉 → 𝑑 𝐴 → 𝑑 𝑎 𝐴′ → 𝑑 𝑎 𝑉 → 𝑑 𝑎 𝑀 →
𝑑 𝑎 𝑑 𝑉 → 𝑑 𝑎 𝑑 𝐴 → 𝑑 𝑎 𝑑 𝑎 𝐴′ → 𝑑 𝑎 𝑑 𝑎 𝑉 → 𝑑 𝑎 𝑑 𝑎 𝑉 ′ → 𝑑 𝑎 𝑑 𝑎 𝑑 𝑀 ′ → 𝑑 𝑎 𝑑 𝑎 𝑑 𝑉 ′ →
𝑑 𝑎 𝑑 𝑎 𝑑 𝐴 → 𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝐴′ → 𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝑉 ′ → 𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝑑 𝑀 ′ → 𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝑑 . However, the
underlying regular language also includes unwanted strings. For instance, consider path 𝑝′:

*x
𝑑−→ x

𝑎−→ *y
𝑑−→ y

𝑎−→ &r
𝑎−→ s

𝑑−→ *s (2)

𝑅(𝑝′) represents an unwanted string derived as follows: 𝑀 →∗ 𝑑 𝑎 𝑑 𝑎 𝑉 ′ → 𝑑 𝑎 𝑑 𝑎 𝐴 →
𝑑 𝑎 𝑑 𝑎 𝑎 𝐴′ → 𝑑 𝑎 𝑑 𝑎 𝑎 𝑉 ′ → 𝑑 𝑎 𝑑 𝑎 𝑎 𝑑 𝑀 ′ → 𝑑 𝑎 𝑑 𝑎 𝑎 𝑑 . Here, 𝑝′ qualifies as an 𝐿′-path but
not an 𝐿-path, since 𝐿′ fails to account for the matching behavior between the terminals 𝑑 and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:9

𝑑 . Without the refinement in Step (1), the production 𝐴
′ → 𝜖 would be included, allowing 𝑅(𝑝)’s

derivation to prematurely terminate at𝑀 →∗ 𝑑 𝑎 𝐴′, resulting in the incomplete string 𝑑 𝑎, which
is also not part of the original language.

4.1.2 Correctness for Approximating 𝐿-Contributing Edges. We now examine the correctness of
our graph simplification technique. Given a CFL 𝐿 and its regular approximation 𝐿′, 𝐿′ “relaxes”
language reachability (Lemma 4.2), allowing us to over-approximate the set of 𝐿-contributing edges
in G (Lemma 4.3) and ensure the correctness of the graph simplification (Theorem 4.6).

Lemma 4.2 (Relaxed Reachability). Consider any two nodes 𝑢 and 𝑣 in 𝐺 . If 𝑣 is 𝐿-reachable from
𝑢 via a path 𝑝 in 𝐺 , then 𝑣 must also be 𝐿′-reachable from 𝑢 via 𝑝 .

Proof Sketch. Let the set of strings generated by 𝐿 be L(𝐿). Without loss of generality, let us
assume 𝑣 is 𝐿-reachable from 𝑢 via path 𝑝 such that 𝑅(𝑝) ∈ L(𝐿), and since 𝐿′ over-approximates
𝐿 (L(𝐿) ⊆ L(𝐿′)), it follows that 𝑅(𝑝) ∈ L(𝐿′). Therefore, 𝑣 is 𝐿′-reachable from 𝑢 via 𝑝 . □

Lemma 4.3. In 𝐺 , if an edge 𝑢
𝑡−→ 𝑣 is 𝐿-contributing, then it is also 𝐿′-contributing.

Proof Sketch. Assume that 𝑢
𝑡−→ 𝑣 contributes to an 𝐿-reachable path 𝑝 . According to Lemma 4.2,

𝑝 must also be an 𝐿′-reachable path, which 𝑢
𝑡−→ 𝑣 contributes to. □

Corollary 4.4. In 𝐺 , if an edge 𝑢
𝑡−→ 𝑣 is non-contributing to 𝐿′-reachability, then it is also

non-contributing to 𝐿-reachability.

Example 4.5. Continuing from Example 4.1, where 𝐿 is provided in Figure 1b and 𝐿′ in Figure 2,
the𝑀-reachable path from *s to *x under 𝐿 is also𝑀-reachable under 𝐿′. Evidently, any path that
qualifies as an 𝑀-path in 𝐿-reachability also qualifies in 𝐿′-reachability. However, if we instead
select *x and r as the source and sink, and let 𝑝′ be the sub-path from *x to r in Equation (1), we
find that 𝑝′ qualifies as an𝑀-path in 𝐿′-reachability but not in 𝐿-reachability.

By removing edges in G that do not contribute to 𝐿′, we create a simplified graph𝐺 ′. Since these
edges do not contribute to any 𝐿-reachable pair in 𝑉src ×𝑉snk, verifying 𝐿-reachability on both 𝐺
and 𝐺 ′ should yield the same set of 𝐿-reachable pairs. This confirms the correctness of this regular
approximation as a graph simplification technique, as formally stated below.

Theorem 4.6 (Correctness of Regular Approximation). Given an instance (𝐿,𝐺,𝑉src,𝑉snk) of a
client-driven CFL-reachability problem, solving 𝐿-reachability from any source in 𝑉src to any sink
in 𝑉snk on 𝐺 and its simplified version 𝐺 ′ yields the same set of 𝐿-reachable source-to-sink pairs.

Proof Sketch. Let 𝐸𝐶 and 𝐸′
𝐶
represent the sets of 𝐿-contributing and 𝐿′-contributing edges,

respectively. According to Lemma 4.3, 𝐸𝐶 ⊆ 𝐸′
𝐶
, making 𝐸′

𝐶
an over-approximation of 𝐸𝐶 . Therefore,

the edges that are not in 𝐸′
𝐶
are non-contributing to 𝐿-reachability (Corollary 4.4) and can be safely

removed from𝐺 , resulting in the simplified graph𝐺 ′. This removal does not affect the 𝐿-reachability
of any source-to-sink paths from 𝑉src to 𝑉snk, ensuring the simplification maintains the accuracy of
CFL-reachability analysis on 𝐺 ′. □
It is important to note that the graph simplification process reduces not only the edge set but

also the node set of 𝐺 . Intuitively, a node 𝑢 with only non-contributing incoming and outgoing
edges can be safely removed. This effect is demonstrated in Figure 1e from our motivating example,
where four extraneous nodes—*z, z, t, and &t—are removed from the input graph 𝐺 to obtain 𝐺 ′.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:10 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

𝑀

𝑀 ′

𝑉

𝑉 ′

𝐴

𝐴′

𝐴

𝐴′

𝑎 𝜖

𝜖 𝜖

𝑎 𝜖𝜖 𝑎𝜖

𝑑

𝜖 𝜖

𝑑 𝜖
𝑎

Fig. 3. NFA derived from the regular grammar in Figure 2, with the initial state𝑀 and as the final state𝑀′
.

4.2 Identifying 𝐿′-Contributing Edges

After regularizing 𝐿 to 𝐿′ as described in Section 4.1, we proceed to identify 𝐿′-contributing edges
as an over-approximation of 𝐿-contributing edges. To achieve this, we examine the transition rules
of a finite automaton, which is equivalent to the regular language 𝐿′. Specifically, we track the
state transitions of nodes in 𝐺 , using them to guide the identification of 𝐿′-contributing edges.

4.2.1 From 𝐿′ to Finite Automaton. 𝐿′, obtained by regularizing 𝐿 in Section 4.1.1, is strongly
regular, enabling its straightforward conversion into a finite automaton [Nederhof 2000].
Finite Automata. A deterministic finite automaton (DFA) is a 5-tuple A = (𝑄, Σ, 𝛿, 𝑞init, 𝐹),

where 𝑄 is a finite set of states, Σ a finite alphabet, 𝛿 : 𝑄 × Σ → 𝑄 the transition function, 𝑞init ∈ 𝑄

the initial state, and 𝐹 ⊆ 𝑄 the set of final states. A nondeterministic finite automaton (NFA) extends
a DFA by allowing 𝛿 : 𝑄 × (Σ ∪ {𝜖}) → P(𝑄), where 𝜖 permits transitions without consuming an
input symbol and P(𝑄) allows multiple possible next states.

Definition 4.7 (Transition Sequence). Consider a string 𝜔 = 𝑡1𝑡2 . . . 𝑡𝑘 , where 𝑡𝑖 ∈ Σ. If there
exists a chain of state transitions: 𝑞0

𝑡1−→ 𝑞1
𝑡2−→ . . .

𝑡𝑘−→ 𝑞𝑘 in a finite automaton A, such that each
transition 𝑞𝑖−1

𝑡𝑖−→ 𝑞𝑖 is defined in the transition function 𝛿 for all 𝑖 from 1 to 𝑘 , then this sequence
of transitions represents the transition sequence for string 𝜔 in A.

Let us examine this definition in more detail. If A is deterministic, the transition sequence for a
string is unique, provided it exists. Note that 𝑞0 in this definition may not necessarily be the initial
state 𝑞init. The transition sequence of a string serves as a witness to the computation of A as it
processes the string. A string is accepted by the automaton if, and only if, its transition sequence
begins at the initial state 𝑞init and ends at a final state 𝑞f ∈ 𝐹 .
Translation to NFA. Given a strongly regular grammar 𝐿′ (Section 4.1.1), we convert it into

an equivalent NFA N following [Mohri and Nederhof 2001]. We set 𝑆 as the initial state and 𝑆 ′ as
the final state of N , where 𝑆 is the start nonterminal of the original grammar 𝐿, and 𝑆 ′ is a new
nonterminal introduced in the MN-transformation (Section 4.1). The production 𝑆 ′ → 𝜖 allows 𝑆 ′
to generate the empty string, completing string recognition. Hence, a string in 𝐿′ is accepted by N
if it follows a transition sequence from 𝑆 to 𝑆 ′.
Conversion to DFA. The NFA N is converted into an equivalent DFA D using the standard

subset construction algorithm [Aho et al. 2006]. We then employ Hopcroft’s algorithm [Hopcroft
1971] for state minimization to eliminate redundant states. The resulting DFA accurately simulates
the behavior of the original NFA, facilitating predictable and efficient computations.

Example 4.8. Figure 3 shows the NFA derived from the regular grammar 𝐿′ in Figure 2, with
the corresponding DFA in Figure 1d. Revisiting the 𝑀-path from *x to *s (Equation (1)) in our
motivating example, Figure 4 illustrates the relationship of this path (reproduced in Figure 4a) with

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:11

*x x *y y &r r s *s
𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝑑

(a) The𝑀-path from *x to *t in Equation (1)

𝑀 𝑉 𝐴 𝐴′ 𝑉 𝑀 𝑉 𝐴 𝐴′

𝑉𝑉 ′𝑀 ′𝑉 ′𝐴𝐴′𝑉 ′𝑀 ′

𝑑 𝜖 𝑎 𝜖 𝜖 𝑑 𝜖 𝑎

𝜖
𝜖𝑑𝜖𝜖𝑎𝜖𝑑

(b) Transition sequence on the NFA in Figure 3

𝑞0 𝑞1 𝑞1 𝑞1 𝑞1 𝑞3 𝑞2 𝑞3
𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝑑

(c) Transition sequence on the DFA in Figure 1d

Fig. 4. The𝑀-path from Figure 1 (as given in Equation (1)) and the transition sequences of its path string.

the transition sequences in both the NFA and DFA. The NFA moves from state𝑀 to𝑀 ′ through 16
transitions (Figure 4b) , while the DFA progresses from state 𝑞0 to 𝑞3 in just 7 transitions (Figure 4c),
illustrating the DFA’s efficiency. Both sequences correspond to the𝑀-path defined by 𝐿′.

4.2.2 Determining 𝐿′-Contributing Edges. Since the regular language 𝐿′ and the DFA D are equiv-
alent, we can utilize the DFA’s state transitions to identify 𝐿′-contributing edges.

The DFA D provides an alternative representation of the regular language 𝐿′. Consider a path 𝑝

in𝐺 : 𝑣0
𝑡1−→ 𝑣1

𝑡2−→ . . .
𝑡𝑘−→ 𝑣𝑘 , where the path string 𝑅(𝑝) = 𝑡1𝑡2 . . . 𝑡𝑘 forms a string 𝜔 ∈ Σ∗. Since D

is deterministic, the transition sequence for 𝜔 is unique, if it exists. Although determinism is not
crucial for identifying 𝐿′-contributing edges, converting the original NFA N to a state-minimal
DFA D often reduces the number of states practically, despite no theoretical guarantee—a well-
established fact. This reduction, demonstrated in Figures 7 and 8 for our two key client analyses,
accelerates the identification process, as explained in Example 4.8.

Correspondence between 𝐿′-Reachable Paths and Transition Sequences. Since 𝐿′ and D
are equivalent, it is well-known that a string 𝜔 belongs to 𝐿′ if and only if it is accepted by D.

Lemma 4.9. Let 𝐿′ be a regular language and A = (𝑄, Σ, 𝛿, 𝑞init, 𝐹) its equivalent finite automaton.
A path 𝑝 = 𝑣 → · · · → 𝑣 ′ in 𝐺 is 𝐿′-reachable if and only if the path string 𝑅(𝑝) has a transition
sequence starting at 𝑞init and ending at a final state 𝑞f ∈ 𝐹 .

Proof Sketch. Given the equivalence between 𝐿′ and A, this proof is derived directly from the
definitions of 𝐿′-path (Section 2.2) and transition sequence (Definition 4.7). □
Configurations. This lemma illustrates that comparing a path 𝑝 with its transition sequence

𝑅(𝑝) aligns each automaton state with a specific node in 𝐺 , forming a sequence of configurations:
(𝑣0, 𝑞0)

𝑡1−→ (𝑣1, 𝑞1)
𝑡2−→ . . .

𝑡𝑘−→ (𝑣𝑘 , 𝑞𝑘). Each pair (𝑣𝑖 , 𝑞𝑖) from 𝑉 ×𝑄 constitutes a configuration for
node 𝑣𝑖 . A node in 𝐺 can have multiple configurations based on its paths. We focus on identifying
realizable configurations, which are crucial for establishing 𝐿′-reachable pairs (𝑢, 𝑣) ∈ 𝑉src ×𝑉snk.

Definition 4.10 (Realizable Configurations). A configuration (𝑣, 𝑞) ∈ 𝑉 ×𝑄 is called realizable if
the following two conditions are both satisfied:
(1) There exists a path in 𝐺 from some node 𝑣src ∈ 𝑉src to 𝑣 that corresponds to a transition

sequence from the initial state 𝑞init to 𝑞, and
(2) There exists a path in 𝐺 from 𝑣 to some node 𝑣snk ∈ 𝑉snk that corresponds to a transition

sequence from 𝑞 to a final state 𝑞f ∈ 𝐹 .
Note that 𝑣src and 𝑣snk may not be necessarily distinct from 𝑣 .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:12 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

Intuitively, this definition implies the existence of an𝐿′-path from 𝑣src to 𝑣snk via node 𝑣 . According
to the two conditions, there exists a path 𝑝 in 𝐺 of the form 𝑣src → · · · → 𝑣 → · · · → 𝑣snk. The
corresponding path string 𝑅(𝑝) has an associated transition sequence from 𝑞init to 𝑞f , passing
through state 𝑞 at node 𝑣 . By Lemma 4.9, this means that 𝑣snk is 𝐿′-reachable from 𝑣src.
Finally, we present a necessary and sufficient condition based on realizable configurations that

enables us to identify 𝐿′-contributing edges in 𝐺 efficiently.

Theorem 4.11 (Determining 𝐿′-Contributing Edges). In𝐺 , an edge 𝑢
𝑡−→ 𝑣 is 𝐿′-contributing if and

only if there exist realizable configurations (𝑢, 𝑞1) and (𝑣, 𝑞2), such that 𝑞1 × 𝑡 → 𝑞2 ∈ 𝛿 .

Proof Sketch. To prove the implication “=⇒”, assume that𝑢
𝑡−→ 𝑣 is part of an 𝐿′-path 𝑣src → · · · →

𝑢
𝑡−→ 𝑣 → · · · → 𝑣snk. According to Lemma 4.9, there exists a configuration chain (𝑣src, 𝑞init) →

· · · → (𝑢, 𝑞1)
𝑡−→ (𝑣, 𝑞2) → · · · → (𝑣snk, 𝑞f). By Definition 4.10, the configurations (𝑢, 𝑞1) and (𝑣, 𝑞2)

are realizable. Furthermore, the transition from (𝑢, 𝑞1) to (𝑣, 𝑞2) is effected by the edge 𝑢
𝑡−→ 𝑣 ,

verifying that this edge contributes to the reachability from 𝑣src to 𝑣snk.
To prove the implication “⇐=”, assume (𝑢, 𝑞1) and (𝑣, 𝑞2) are realizable configurations. This

implies there exist (1) a path from 𝑣src to 𝑢 corresponding to a transition sequence 𝑞init → · · · → 𝑞1,
and (2) a path from 𝑣 to 𝑣snk corresponding to a transition sequence 𝑞2 → · · · → 𝑞f . The transition
𝑞1 × 𝑡 → 𝑞2 effectively connects these two paths, establishing an 𝐿′-path as outlined in Lemma 4.9.
This linkage confirms that 𝑢

𝑡−→ 𝑣 is an 𝐿′-contributing edge, completing our proof. □

Example 4.12. Returning to our motivating example in Figure 4, based on the relationship between
the𝑀-path in Figure 4a and the transition sequence in Figure 4c, we deduce a configuration chain:

(*x, 𝑞0) → (x, 𝑞1) → (*y, 𝑞1) → (y, 𝑞1) → (&r, 𝑞1) → (r, 𝑞3) → (s, 𝑞2) → (*s, 𝑞3)
All configurations in this chain are realizable, and according to Theorem 4.11, the edges in this
𝑀-path are 𝐿′-contributing (thus 𝐿-contributing since 𝐿′ over-approximates 𝐿). Let us now consider
the path 𝑝′ in Equation (2). While all its edges are identified as 𝐿′-contributing due to (*x, 𝑞0) →
· · · → (&r, 𝑞1) → (s, 𝑞2) → (*s, 𝑞3), the edge &𝑟

𝑎−→ 𝑠 is deemed 𝐿-contributing spuriously.

5 Graph Simplification Algorithm

We introduce our regularization-based graph simplification algorithm designed to identify 𝐿′-
contributing edges, following the guidelines set forth in Theorem 4.11. The algorithm utilizes the
DFA D, derived from 𝐿′, to iteratively compute realizable configurations during the traversal of 𝐺 .

5.1 Computing Realizable Configurations

Algorithm 1 details the algorithm for computing the set𝐶 of realizable configurations. This algorithm
operates by intersecting two sets of reachable configurations: one set generated in the forward
phase (lines 5-13), originating from sources in 𝑉src and the initial state, and the other set in the
backward phase (lines 14-23), starting from sinks in 𝑉snk and the final states. The intersection
ensures that each realizable configuration (𝑣, 𝑞) forms part of a configuration chain from (𝑣src, 𝑞init)
through (𝑣, 𝑞) to (𝑣snk, 𝑞f), where 𝑣src ∈ 𝑉src, 𝑣snk ∈ 𝑉snk, and 𝑞f ∈ 𝐹 .

Initially, three sets are initialized as empty: the worklist𝑊 , FC for storing visited configurations
during the forward phase, and 𝐶 for storing realizable configurations (lines 2-4).
In the forward phase (lines 5-13), pairs from 𝑉src × {𝑞init} are added to𝑊 and FC as initial

configurations (lines 5-7). The loop from lines 8-13 continuously processes configurations that are
reachable during forward traversal until no new configurations can be reached. A configuration
(𝑣 ′, 𝑞′) is added to FC and𝑊 if it has not been visited before ((𝑣 ′, 𝑞′) ∉ FC).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:13

Algorithm 1: Computing realizable configurations.
Input: A = (𝑄, Σ, 𝑞init, 𝛿, 𝐹), 𝐺 = (𝑉 , 𝐸), 𝑉src, and 𝑉snk
Output: the set 𝐶 of all realizable configurations

1 Proc ComputeRLZConf(A,𝐺,𝑉src,𝑉snk):

2 𝑊 = ∅; /* WorkList */

3 FC = ∅; /* Configurations in forward phase */

4 𝐶 = ∅; /* Realizable configurations */

5 for 𝑣 ∈ 𝑉src do

6 if (𝑣, 𝑞init) ∉ FC then

7 add (𝑣, 𝑞init) to FC and𝑊 ;

8 while𝑊 ≠ ∅ do

9 pop (𝑣, 𝑞) from𝑊 ;
10 for 𝑣

𝑡−→ 𝑣 ′ ∈ 𝐸 do

11 for 𝑞 × 𝑡 → 𝑞′ ∈ 𝛿 do

12 if (𝑣 ′, 𝑞′) ∉ FC then

13 add (𝑣 ′, 𝑞′) to FC and𝑊 ;

14 for 𝑣 ∈ 𝑉snk do

15 for 𝑞𝑓 ∈ 𝐹 do

16 if (𝑣, 𝑞𝑓) ∈ FC ∧ (𝑣, 𝑞𝑓) ∉ 𝐶 then

17 add (𝑣, 𝑞𝑓) to 𝐶 and𝑊 ;

18 while𝑊 ≠ ∅ do

19 pop (𝑣, 𝑞) from𝑊 ;
20 for 𝑣 ′

𝑡−→ 𝑣 ∈ 𝐸 do

21 for 𝑞′ × 𝑡 → 𝑞 ∈ 𝛿 do

22 if (𝑣 ′, 𝑞′) ∈ FC ∧ (𝑣 ′, 𝑞′) ∉ 𝐶 then

23 add (𝑣 ′, 𝑞′) to 𝐶 and𝑊 ;

24 return 𝐶;

The backward phase (lines 14-23) operates similarly to the forward phase but starts with con-
figurations in 𝑉snk × 𝐹 (lines 14-17). During this traversal (lines 18-23), a configuration (𝑣 ′, 𝑞′)
is considered only if previously visited in the forward phase ((𝑣 ′, 𝑞′) ∈ FC) and not yet visited
in the backward phase ((𝑣 ′, 𝑞′) ∉ 𝐶). This selective process efficiently performs the intersection,
minimizing unnecessary traversal and focusing on potentially realizable configurations.
Time Complexity. Algorithm 1 operates with a time complexity of 𝑂 (|𝑄 |2 × |𝐸 |), where 𝑄

represents the states ofA. The sets𝑊 , FC, and𝐶 are managed using hash tables, enabling operations
like insertions and lookups in lines 6-7, 12-13, 16-17, and 22-23 to occur in 𝑂 (1) amortized time.
The forward phase, delineated in lines 5-13, initializes initial configurations based on 𝑉src, re-

sulting in 𝑂 (|𝑉src |) complexity. The main loop from lines 8-13 processes the worklist until no new
configurations are found, iterating over potential configurations bounded by |𝑄 | × |𝑉 |. Each node 𝑣
can have up to |𝑉 | × |Σ| outgoing edges. As A is deterministic, there is at most one output state
from state 𝑞 via any terminal 𝑡 . Given these dynamics, the while loop in lines 8-13 might seem
to have a complexity of 𝑂 (|𝑄 | × |𝑉 |2 × |Σ|) in a naive analysis. However, since each node 𝑣 in
𝐺 can host at most |𝑄 | configurations and each configuration (𝑣, 𝑞) can only initiate transitions
corresponding to 𝑣 ’s outgoing edges — each potentially yielding up to one resultant state — an
amortized analysis leads us to a complexity of 𝑂 (|𝑄 | × |𝐸 |) for the forward phase.
The backward phase, processed in lines 14-23, contributes 𝑂 (|𝑉snk | × |𝐹 | + |𝑄 |2 × |𝐸 |) to the

overall time complexity, as an output state can have up to |𝑄 | possible input states transited via
a terminal 𝑡 (line 21). Combining these, Algorithm 1 exhibits a complexity of 𝑂 (|𝑉src | + |𝑉snk | ×
|𝐹 | + |𝑄 | × |𝐸 | + |𝑄 |2 × |𝐸 |). Assuming |𝑉 | ≤ |𝐸 |, and since 𝑉src and 𝑉snk are subsets of 𝑉 , and 𝐹 is a
subset of 𝑄 , the complexity simplifies to 𝑂 (|𝑄 |2 × |𝐸 |), covering all phases of the algorithm.

Space Complexity. The space complexity of Algorithm 1 is𝑂 (|𝑄 |× |𝑉 |), reflecting the maximum
potential number of configurations that can be stored or processed within the algorithm.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:14 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

Algorithm 2: Graph simplification.
Input: A = (𝑄, Σ, 𝑞init, 𝛿, 𝐹), 𝐺 = (𝑉 , 𝐸), 𝑉src, and 𝑉snk
Output: a simplified graph 𝐺 ′

1 Proc GraphSim(A,𝐺,𝑉src,𝑉snk):
2 𝐶 = ComputeRLZConf(A,𝐺,𝑉src,𝑉snk);
3 𝐸′

𝐶
= ∅ /* Approximate contributing edges */

4 for 𝑢
𝑡−→ 𝑣 ∈ 𝐸 do

5 if ∃𝑞 × 𝑡 → 𝑞′ ∈ 𝛿 ∧ (𝑢, 𝑞) ∈ 𝐶 ∧ (𝑣, 𝑞′) ∈ 𝐶 then

6 𝐸′
𝐶
= 𝐸′

𝐶
∪ {𝑢 𝑡−→ 𝑣};

7 𝑉 ′ = {𝑢 | 𝑢 𝑡−→ 𝑣 ∈ 𝐸′
𝐶
} ∪ {𝑣 | 𝑢 𝑡−→ 𝑣 ∈ 𝐸′

𝐶
};

8 return 𝐺 ′ = (𝑉 ′, 𝐸′
𝐶
);

5.2 Overall Algorithm

Algorithm 2 describes the overall regularization-based graph simplification process for the input
graph 𝐺 . It starts by identifying realizable configurations using the ComputeRLZConf procedure
fromAlgorithm 1. The loop in lines 4-6 processes the edge set 𝐸 to determine if each edge contributes
to 𝐿′-reachability, as specified by Theorem 4.11 and implemented in line 5. The algorithm completes
by creating a simplified graph 𝐺 ′, where non-contributing edges are removed.
For an edge 𝑢

𝑡−→ 𝑣 , label 𝑡 can result in up to |𝑄 | transitions, since the output state is uniquely
determined by the input state provided it exists, giving the loop at lines 4-6 in Algorithm 2 a time
complexity of 𝑂 (|𝑄 | × |𝐸 |). Including the complexity of the ComputeRLZConf procedure, the total
time complexity of Algorithm 2 is 𝑂 (|𝑄 |2 × |𝐸 |). The space complexity of Algorithm 2, primarily
determined by ComputeRLZConf, is 𝑂 (|𝑄 | × |𝑉 |).
In practice, the DFA D derived from 𝐿′ typically features only a few states; for instance, the

DFAs in our study in Section 6 contain just 3 and 4 states each. Consequently, the time complexity
of Algorithm 2 is linear to the number of edges in the input graph𝐺 . Since𝐺 is generally sparse in
real-world program analysis, where |𝐸 | = 𝑂 (|𝑉 |), this translates to approximately linear complexity
with respect to |𝑉 |. Therefore, MoYe is highly efficient, making it an effective pre-processing
technique to streamline the input graph for CFL-reachability, as evaluated below.

6 Evaluation

We evaluate MoYe with two major clients: field-sensitive points-to analysis for Java [Sridharan et al.
2005] and alias analysis for C/C++ [Zheng and Rugina 2008], both extensively studied [Lei et al.
2022a; Shi et al. 2023; Wang et al. 2017; Xu et al. 2024]. Our evaluation confirms MoYe’s efficiency
and effectiveness in enhancing CFL-reachability tasks. Notably, MoYe accelerates a recent CFL-
reachability algorithm [Lei et al. 2022a] and outperforms the leading graph simplification method
Gf [Lei et al. 2023b]. Combined with Gf, MoYe delivers even greater performance gains, proving
its value in optimizing CFL-reachability. In a batch setting, MoYe further boosts performance.
Our experiments are designed to address the following four research questions (RQs):
• RQ1: How efficient is MoYe when used as a pre-analysis tool in the all-queries setting?
• RQ2: To what extent does MoYe reduce the size of input graphs in the all-queries setting?
• RQ3: How much does MoYe accelerate CFL-reachability analysis in terms of reduced runtime
overhead and memory footprint in the all-queries setting?

• RQ4: How significantly does MoYe accelerate CFL-reachability analysis in a batch setting?

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:15

FlowsTo → new | FlowsTo Assign
FlowsTo → new | Assign FlowsTo
Assign → assign | putf Alias getf
Assign → assign | getf Alias putf
Alias → FlowsTo FlowsTo

(a) Original grammar

FlowsTo → new | FlowsTo Assign
Assign → assign | PutAliasf getf
PutAliasf → putf Alias
FlowsTo → new | Assign FlowsTo
Assign → assign | getf PutAliasf
PutAliasf → Alias putf
Alias → FlowsTo FlowsTo

(b) Normalized grammar

Fig. 5. Original and normalized CFGs specifying points-to analysis for Java, with FlowsTo as the start symbol.

𝑉 → 𝐴 𝑉 | 𝑉 𝐴 | 𝑓𝑖 𝑉 𝑓𝑖 | 𝑀 | 𝜖
𝑀 → 𝑑 𝑉 𝑑

𝐴 → 𝑎 | 𝑎 𝑀

𝐴 → 𝑎 | 𝑀 𝑎

(a) Original grammar

𝑉 → 𝐴 𝑉 | 𝑉 𝐴 | FVi 𝑓𝑖 | 𝑀 | 𝜖
FVi → 𝑓𝑖 𝑉

𝑀 → DV 𝑑

DV → 𝑑 𝑉

𝐴 → 𝑎 | 𝑎 𝑀

𝐴 → 𝑎 | 𝑀 𝑎

(b) Normalized grammar

Fig. 6. Original and normalized CFGs specifying alias analysis for C/C++, with 𝑉 as the start symbol.

We assess MoYe’s performance in two distinct settings. First, for RQ1, RQ2, and RQ3, we adopt
the all-queries approach—resolving every source–sink pair in𝑉src ×𝑉snk via a single pass, following
Cfl’s and Gf’s evaluation methodology [Lei et al. 2022a, 2023b]. This method efficiently handles
large sets of queries by establishing all-pairs reachability, allowing constant-time solutions for each
query once computed, and thus provides an approximate lower bound on MoYe’s performance
gains in accelerating CFL-reachability analysis. Additionally, it offers an upper bound on MoYe’s
resource usage and a lower bound on its graph reduction potential. In this setting, a demand-driven
approach, which handles each query individually, has no theoretical advantage: answering a single
query can take𝑂 (|𝑉 |3) [Yannakakis 1990], and many queries share overlapping paths—resulting in
redundant work [Vedurada and Nandivada 2020; Zheng and Rugina 2008].
For RQ4, we use a batch-based approach, where queries are grouped into smaller batches of

source–sink pairs from𝑉 ′
src ×𝑉 ′

snk (𝑉
′
src ⊆ 𝑉src and𝑉 ′

snk ⊆ 𝑉snk). This method is particularly effective
for handling a moderate number of queries in a demand-driven manner.

6.1 Implementation

Field-Sensitive Points-to Analysis for Java. Figure 5a displays the standard CFG used for
specifying points-to analysis in Java. This CFL-reachability analysis designates allocation and
virtual-invocation statements as sources and sinks, respectively, focusing only on those virtual-
invocation statements within application code and new statements where allocated objects are
utilized within the application [Ali and Lhoták 2012]. This setup facilitates the construction of a call
graph by establishing CFL-reachability for all source-to-sink pairs. The standard CFL-reachability
algorithm [Melski and Reps 2000] mandates that the CFG be normalized, ensuring that each
production’s right-hand side contains at most two symbols. The normalized version is depicted in
Figure 5b. The alphabet Σ includes four types of terminals: new, assign, putf , and getf , representing
allocation, assignment, field write, and field read, respectively. In points-to analysis graphs 𝐺 [He
et al. 2023, 2022; Sridharan et al. 2005; Xu et al. 2009], as described by [Reps 1998] and constructed
using Tai-e [Tan and Li 2023], each edge is bidirectional; for any edge 𝑣

𝑡−→ 𝑢, a corresponding

inverse edge 𝑢
𝑡−→ 𝑣 exists. This setup utilizes terminals like new, assign, putf , and getf to denote

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:16 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

FlowsTo → new FlowsTo′

FlowsTo′ → Assign | Alias′ | 𝜖
FlowsTo → new FlowsTo′ | Assign
Assign → assign Assign′ | putf Alias
Assign′ → FlowsTo′

Assign → assign Assign′ | getf Alias
Assign′ → FlowsTo
Alias → FlowsTo
Alias′ → getf Assign′ | putf Assign′
FlowsTo′ → FlowsTo

(a) Approximated regular grammar

𝑛1 𝑛2 𝑛3
new new

assign, getf assign, getf

putf , putf

(b) State-minimal DFA

Fig. 7. Field-sensitive points-to analysis for Java.

𝑉 → 𝑓𝑖 𝑉 | 𝐴 | 𝑀 | 𝑉 ′

𝑉 ′ → 𝑑 𝑀 ′ | 𝑓𝑖 𝑉 ′ | 𝐴 | 𝜖
𝑀 → 𝑑 𝑉

𝑀 ′ → 𝑉 ′ | 𝐴′ | 𝑎 𝐴′

𝐴 → 𝑎𝑠𝑠𝑖𝑔𝑛 𝑀 | 𝑎𝑠𝑠𝑖𝑔𝑛 𝐴′

𝐴′ → 𝑉 ′

𝐴′ → 𝑉

𝐴 → 𝑀 | 𝑎 𝐴′

(a) Approximated regular grammar

𝑛1

𝑛2

𝑛3 𝑛4𝑎, 𝑑 , 𝑓𝑖

𝑑

𝑎

𝑓𝑖

𝑎

𝑑

𝑎
𝑓𝑖

𝑑

𝑑

𝑎
𝑓𝑖

𝑎

𝑑

𝑓𝑖

(b) State-minimal DFA

Fig. 8. Field-sensitive alias analysis for C/C++.

these inverse edge labels. The start symbol FlowsTo indicates the flow of an object to a pointer,
while its inverse, FlowsTo, represents standard points-to relations. Additionally, the normalization
step often introduces new nonterminals, such as PutAliasf and PutAliasf , as seen in Figure 5b.

Field-Sensitive Alias Analysis for C/C++. Figure 6 presents both the original and normalized
CFGs utilized for alias analysis in C/C++. This CFL-reachability analysis designates store and load
statements as sources and sinks, respectively, and determines the value alias relation (denoted by
the start symbol 𝑉) between sources and sinks, facilitating the tracking of indirect value flows
through memory accesses [Li et al. 2011; Shi et al. 2018; Sui and Xue 2018; Yao et al. 2024]. The
original CFG includes a field-sensitive production 𝑉 → 𝑓𝑖 𝑉 𝑓𝑖 , where 𝑓𝑖 represents the 𝑖-th object
field. Alias analysis graphs 𝐺 are constructed by the open-source SVF tool [Sui and Xue 2016].
CFL-Reachability Solver. To address CFL-reachability problems, we use Pocr, a recent CFL-

reachability algorithm [Lei et al. 2022a], which reduces transitive redundancy via ordered deriva-
tions, along with bit-vector set operations for subcubic performance [Chaudhuri 2008] implemented
by us. The tool is sourced from the Pocr artifact [Lei et al. 2022b]. We refer to this solver as Cfl,
which requires a normalized CFG as input, like those shown in Figures 5b and 6b.

MoYe. We developed MoYe in two components: The first component, a Python3 module,
transforms a CFG into a DFA via an intermediary regular grammar, producing identical DFAs from
original or normalized grammars in under a second. This one-time process per CFG is illustrated
in Figures 7 and 8, with resulting DFAs for points-to and alias analysis having 3 and 4 states,
respectively (Figures 7b and 8b). The second component, which handles graph simplification, uses
these DFAs and is implemented in LLVM-14.0.0 (Algorithms 1 and 2).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:17

Validation of Correctness. We empirically validated the correctness of our graph simplification
technique MoYe on all Java and C/C++ programs where Cfl is scalable, listed in Tables 2 and 3, by
confirming that Cfl produces the same set of 𝐿-reachable pairs in 𝑉src ×𝑉snk on both the original
graph 𝐺 and the simplified graph 𝐺 ′ generated by MoYe.

6.2 Experimental Setup

Baselines. We evaluate MoYe’s effectiveness in improving CFL-reachability analysis via graph size
reduction and compare it against Gf, the current leading approach [Lei et al. 2023b]. Because their
methods are orthogonal, we also test Combined, applying Gf first to contract edges, then MoYe
to remove non-contributing edges. Running MoYe before Gf is infeasible because Gf assumes
bidirectional graphs for points-to/alias analysis, a key to optimizing edge scanning [Lei et al. 2023a];
doing so would disrupt Gf’s foundational assumptions (Figure 1e). Furthermore, Gf is faster, making
it more practical to apply before MoYe, as demonstrated in our results (Tables 2 and 3). We measure
performance gains by executing the Cfl solver on both the original and simplified graphs.

Experimental Settings. All experiments are conducted on a server with dual 12-core Intel(R)
Xeon(R) Gold 5317 CPUs at 3.00GHz and 2 TB of RAM, with each run capped at 6 hours and
512 GB of memory. We report the mean (𝜇) time and memory usage over 6 runs for each experi-
ment. Following standard evaluation guidelines [Georges et al. 2007], we calculated the standard
variation 𝜎 , observing a maximum coefficient of variation (𝐶𝑉 = 𝜎

𝜇
) of 4.98%, indicating minimal

variation [Westgard nd]. We then calculate statistics on average metrics across benchmarks—such
as speedups and reduction rates—using geometric means.
Benchmarks and Graph Construction. Following the latest related work [He et al. 2024a],

we have selected 13 Java programs from the well-known DaCapo benchmark [Blackburn et al.
2006] (version 6cf0380) for points-to analysis, coupled with a large Java library (JRE1.8.0_31)
and TamiFlex [Bodden et al. 2011] for reflection handling. The number of classes and reachable
methods are displayed in Columns 2-3 in Table 2. Consistent with prior studies [He et al. 2024b;
Thiessen and Lhoták 2017], we have excluded jython due to its overly conservative reflection
log, which rendered it unscalable within our time budget. We employ Tai-e [Tan and Li 2023], an
open-source static analysis framework, to translate these Java programs into bytecode for graph
extraction. For alias analysis, we evaluate 10 C/C++ programs from the SPEC 2017 suite. They are
compiled with Clang and linked into LLVM bitcode using wllvm1, then analyzed with the SVF
framework [Sui and Xue 2016] to generate input graphs. Sources and sinks are identified during
graph generation. Detailed statistics on the number of nodes, edges, sources, and sinks in each
program—tailored to points-to and alias analyses—are listed in Table 2 and Table 3, respectively.

6.3 RQ1: Evaluating MoYe’s Efficiency as Pre-Analysis

In this first RQ, we measure the computational and memory overhead of MoYe as a pre-analysis
technique in the all-queries setting by solving all source–sink pairs in 𝑉src × 𝑉snk in a single
pass, which approximates an upper bound on MoYe’s resource usage. Tables 2 and 3 show the
analysis time and memory usage for the graph simplification techniques—MoYe, Gf, and Combined
—applied to each program under points-to and alias analyses, respectively. For comparison, we also
run Cfl on the original (unsimplified) graphs, providing a reference point.

Points-to Analysis for Java. Table 2 shows that MoYe is lightweight, taking about one minute
for fop at its slowest, while Gf typically completes in under ten seconds for all 13 Java programs.
The analysis times for both tools are significantly shorter compared to Cfl’s. Combined, leveraging
Gf’s efficiency and the pre-simplified graph it provides, operates faster than MoYe. In terms of

1https://github.com/travitch/whole-program-llvm

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

https://github.com/travitch/whole-program-llvm

287:18 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

Table 2. Performance results for points-to analysis of Java programs using Cfl for CFL-reachability analysis

and three graph simplification methods (Gf, MoYe, Combined) in the all-queries setting. Columns show

analysis time (seconds), peak memory (MBs), number of classes, reachable methods (cols 2–3), and the graph’s

nodes, edges, sources, and sinks (cols 4–7). A “-” indicates the analysis did not finish within 6 hours.

Bench. #Cls #RM #Nodes #Edges #Srcs #Snks Cfl Gf MoYe Combined
Time Mem Time Mem Time Mem Time Mem

avrora 8,737 12,643 86,457 314,544 8,282 4,529 4,712.79 4,267.74 0.27 54.50 1.89 81.88 1.08 54.47
batik 11,858 29,378 199,790 902,310 16,863 17,366 - - 1.62 128.13 14.91 210.16 8.74 127.57

eclipse 10,134 15,992 119,123 488,122 10,020 12,027 - - 0.53 72.65 4.46 118.61 2.57 72.53
fop 12,871 49,629 370,007 1,856,600 32,099 62,416 - - 9.08 250.27 68.15 402.78 38.62 249.95
h2 10,712 21,343 151,070 668,916 10,924 22,685 - - 0.76 98.46 8.18 153.59 4.66 98.14

luindex 8,433 16,994 119,191 430,822 8,855 12,564 15,485.27 8,830.43 0.43 71.85 3.93 110.75 2.28 71.78
lusearch 8,433 8,719 62,110 229,392 5,391 897 1,756.85 2,343.93 0.15 36.71 0.93 57.82 0.57 36.75

pmd 9,954 24,918 185,812 973,112 13,368 31,232 - - 1.69 126.74 16.58 209.78 9.25 126.42
sunflow 7,399 16,626 115,608 430,460 10,664 2,090 17,582.17 8,883.26 0.41 69.02 3.58 108.21 2.17 68.92
tomcat 8,433 9,486 66,045 244,086 5,773 747 2,146.93 2,649.05 0.16 38.85 1.07 61.46 0.66 38.94

tradebeans 9,954 10,330 74,438 273,734 6,713 747 3,238.06 3,443.98 0.19 43.12 1.36 69.46 0.86 43.17
tradesoap 9,954 10,330 74,438 273,734 6,713 747 3,195.30 3,446.23 0.19 43.23 1.40 69.48 0.87 43.15

xalan 10,841 15,062 115,361 455,242 9,189 13,317 11,493.15 6,788.44 0.45 69.84 3.86 114.31 2.41 69.90
Geo. Mean 9,715 16,333 117,027 472,990 9,828 5,611 5,248.16 4,497.75 0.52 72.24 4.18 115.10 2.48 72.17

Table 3. Performance results for alias analysis of C/C++ programs using Cfl for CFL-reachability and Gf,

MoYe, and Combined for graph simplification in the all-queries setting, with column definitions from Table 2.

Bench. #Nodes #Edges #Srcs #Snks Cfl Gf MoYe Combined
Time Mem Time Mem Time Mem Time Mem

nab 18,151 40,910 867 1,501 68.38 343.80 0.04 21.19 0.07 15.18 0.05 21.38
xz 12,795 27,848 377 568 30.38 195.86 0.03 14.94 0.04 10.81 0.03 15.00

cactus 157,319 335,256 8,211 11,337 - - 0.45 175.96 5.80 129.58 3.42 175.85
leela 22,861 51,958 1,884 2,282 140.97 423.57 0.05 27.44 0.12 20.24 0.09 27.31
x264 68,316 157,582 4,748 6,768 792.87 2,655.51 0.18 78.24 0.63 56.93 0.51 78.33
povray 78,052 185,288 3,228 5,138 - - 0.23 89.97 1.60 63.11 1.17 90.38
parest 120,601 259,762 8,290 13,610 9,536.01 6,985.11 0.37 136.27 4.46 101.29 2.31 136.37
imagick 120,056 322,144 3,120 4,700 - - 0.40 144.19 3.00 100.18 2.96 144.12
omnetpp 244,498 521,674 12,061 29,887 - - 0.85 272.49 14.39 201.42 8.59 272.54

perlbench 160,837 424,272 5,906 17,600 - - 0.61 194.42 9.47 140.38 6.60 194.48
Geo. Mean 69,249 159,613 3,277 5,510 294.46 880.44 0.20 80.34 1.14 58.17 0.79 80.45

memory usage, both MoYe and Gf consume only a fraction of what Cfl requires, with MoYe using
1.38×more than Gf. For Combined, the total pre-analysis time is 𝑡1 + 𝑡2: Gf operates on the original
graph (𝑡1 corresponds to the data in Table 2, 10th column), and MoYe operates on the simplified
graph (𝑡2 is usually less than the data in the 12th column). Thus, Combined’s pre-analysis time
(14th column) does not equal the sum of the 10th and 12th columns. Combined’s peak memory
usage is the higher of Gf’s or MoYe’s. Since the peak occurs during Gf’s stage, the values in the
15th column are very close to those of Gf (11th column). Finally, it is important to note that Cfl
failed to complete analyses for five benchmarks—batik, eclipse, fop, h2, and pmd, highlighting
the critical role of graph simplification techniques in enhancing performance.
Alias Analysis for C/C++. Table 3 reveals that Cfl failed to complete the analysis for half of

the C/C++ programs tested, including cactus, povray, imagick, omnetpp, and perlbench, within
the 6-hour time limit. These programs also required more time and resources for MoYe, Gf, and
Combined. Despite these demands, all three pre-analysis techniques finished much faster than Cfl,
emphasizing their efficiency and lower asymptotic time complexity in comparison.

Compared to Cfl, both MoYe and Gf consume significantly less analysis time and memory, mak-
ing them well-suited as pre-analysis techniques to accelerate CFL-reachability analysis. Specifically,
for benchmarks where Cfl completes within 6 hours, MoYe and Gf require only 0.037% (0.085%)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:19

and 0.005% (0.028%) of the analysis time, while using 1.809% (3.249%) and 1.147% (4.453%) of the
memory consumed by Cfl in points-to (alias) analysis, respectively. Combined also shows similar
benefits, underscoring the value of integrating these two graph simplification methods.

6.4 RQ2: Evaluating MoYe’s Effectiveness in Graph Size Reduction as Pre-Analysis

In this second RQ, we assess MoYe’s effectiveness in reducing input graph sizes relative to Gf in
the all-queries setting, thus establishing an approximate lower bound on MoYe’s graph reduction
potential. Section 6.6 demonstrates that MoYe achieves even greater edge reduction in the batch
setting than shown here. We find MoYe to be both lightweight and highly effective, which enhances
the advantages of Combined —integrating MoYe and Gf together.

Figures 9 and 10 show the reduction rates for nodes and edges in the input graphs for points-to
and alias analyses, respectively. In points-to analysis, Gf reduces nodes by 40.22% and edges by
24.44% on average, while MoYe achieves higher reductions of 63.82% (nodes) and 70.81% (edges).
The combined approach, Combined, yields the best performance, cutting nodes by 77.79% and
edges by 78.32%. In alias analysis, Gf, MoYe, and Combined reduce nodes by 39.84%, 59.14%, and
76.71%, and edges by 36.89%, 65.36%, and 79.0%, respectively.

Combined attains higher reduction rates than MoYe or Gf alone because they reduce the input
graph based on distinct principles: MoYe prunes non-contributing edges to eliminate irrelevant
paths, while Gf contracts trivial edges to shorten paths (see [Lei et al. 2023b] for details on Gf). In
our analyses, Gf only contracts transitive edges—such as assign-edges in points-to analysis and
𝑎-edges in alias analysis—which generally represent assignments in CFL-based program analyses.
In contrast, MoYe removes non-contributing edges of any type from the input graph. Let 𝐸Gf be
the set of edges contracted by Gf, and 𝐸MoYe the set removed by MoYe. The two methods are
compatible for graph simplification. Gf may contract edges that MoYe identifies as necessary for
preserving CFL-reachability; contracting these edges retains reachability, whereas removing them
may cause unsoundness. Such edges lie in 𝐸Gf−𝐸MoYe. Conversely, edges deemed non-contributing
by MoYe may not appear trivial to Gf due to its approximations, so these edges are in 𝐸MoYe − 𝐸Gf.
With respect to node reduction, Gf consolidates two nodes by contracting the edges between them,
while MoYe removes a node only if all its incident edges are non-contributing.

To further demonstrate the effectiveness of MoYe, we conducted an additional cast-may-fail
analysis for Java, utilizing source-to-sink pairs distinct from those in the call graph construction
client. Specifically, we selected new statements as sources and cast statements as sinks, reusing the
grammars and DFA presented in Figures 5 and 7. This analysis focuses on determining the potential
failure of cast statements, like “a = (A) b;”, based on the points-to set of the pointer b. Figure 11
shows MoYe’s reduction rates of nodes and edges in the input graphs, averaging 69.91% and 72.62%,
respectively. These rates are comparable to those observed in the call graph construction client
(Figure 11), highlighting MoYe’s robustness across different analysis scenarios.

6.5 RQ3: Evaluating MoYe’s Impact on CFL-Reachability in the All-Queries Setting

In this third RQ, we assess MoYe’s ability to enhance Cfl (CFL-reachability analysis) by reducing
analysis time and memory usage relative to Gf in the all-queries setting. We also demonstrate
how Combined, which integrates MoYe and Gf, achieves even greater performance, underscoring
MoYe’s pivotal role in significantly boosting analysis efficiency.

As standard practice dictates [Reps et al. 1995], summary edges derived from grammar produc-
tions are added during CFL-reachability solving (Section 2.2). By reducing the input graph size, the
number of summary edges decreases, enabling Cfl to run faster and use less memory. Hereafter,
edges in the input graph are referred to as graph edges to distinguish them from summary edges.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:20 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

av
ro
ra

ba
ti
k

ec
li
ps
e
fo
p h2

lu
in
de
x

lu
se
ar
ch pm

d

su
nf
lo
w

to
mc
at

tr
ad
eb
ea
ns

tr
ad
es
oa
p

xa
la
n

20%
30%
40%
50%
60%
70%
80%

Gf MoYe Combined

(a) Node reduction

av
ro
ra

ba
ti
k

ec
li
ps
e
fo
p h2

lu
in
de
x

lu
se
ar
ch pm

d

su
nf
lo
w

to
mc
at

tr
ad
eb
ea
ns

tr
ad
es
oa
p

xa
la
n

20%
30%
40%
50%
60%
70%
80%

Gf MoYe Combined

(b) Edge reduction

Fig. 9. Reduction rates for nodes and edges in points-to analysis input graphs in the all-queries setting.

na
b xz

ca
ct
us

le
el
a
x2
64

po
vr
ay

pa
re
st

im
ag
ic
k

om
ne
tp
p

pe
rl
be
nc
h

30%

40%

50%

60%

70%

80%

90%
Gf MoYe Combined

(a) Node reduction

na
b xz

ca
ct
us

le
el
a
x2
64

po
vr
ay

pa
re
st

im
ag
ic
k

om
ne
tp
p

pe
rl
be
nc
h

30%

40%

50%

60%

70%

80%

90%
Gf MoYe Combined

(b) Edge reduction

Fig. 10. Reduction rates of nodes and edges in alias analysis input graphs in the all-queries setting.

avro
ra bati

k
ecli

pse fop h2
luin

dex
luse

arch pmd
sunf

low tomc
at
trad

ebea
ns
trad

esoa
p

xala
n

30%

40%

50%

60%

70%

80%
Nodes Edges

Fig. 11. Reduction rates for nodes and edges in cast-may-fail points-to analysis, a significant client analysis

for Java, achieved by MoYe in the all-queries setting.

Reduction of Summary Edges. Figure 12 shows the summary edge reduction rates achieved
by MoYe, Gf, and Combined, focusing on programs Cfl can analyze within 6 hours on the original
graphs. While higher input graph reductions often correlate with greater summary edge reductions,
this is not always the case, as summary edge count also depends on factors like edge types.
In points-to analysis, the average summary edge reductions for MoYe and Gf are 85.31% and

77.34%, respectively. Although MoYe removes significantly more graph edges (70.81%) than Gf
(24.44%), their summary edge reduction rates are comparable because Gf specifically targets
transitive edges, which propagate reachability and lead to new summary edges. By focusing on
transitive edges, Gf effectively eliminates summary edges despite a relatively small reduction in
graph edges, leaving room for orthogonal optimizations such as those proposed in this work. In

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:21

av
ro
ra

lu
in
de
x

lu
se
ar
ch

su
nf
lo
w

to
mc
at

tr
ad
eb
ea
ns

tr
ad
es
oa
p
xa
la
n

40%

50%

60%

70%

80%

90%

100%
Gf MoYe Combined

(a) Points-to analysis

na
b xz

le
el
a

x2
64

pa
re
st

40%

50%

60%

70%

80%

90%

100%
Gf MoYe Combined

(b) Alias analysis

Fig. 12. Reduction rates of summary edges achieved by Gf, MoYe and Combined in the all-queries setting.

av
ro
ra

lu
in
de
x

lu
se
ar
ch

su
nf
lo
w

to
mc
at

tr
ad
eb
ea
ns

tr
ad
es
oa
p
xa
la
n

0

10

20

30

40

Gf MoYe Combined

(a) Points-to analysis

na
b xz

le
el
a

x2
64

pa
re
st

0

50

100

150

Gf MoYe Combined

(b) Alias analysis

Fig. 13. Speedups in CFL-reachability analysis achieved by Gf, MoYe and Combined in the all-queries setting.

alias analysis, MoYe substantially outperforms Gf, achieving 86.47% in summary edge reduction
versus 61.38% for Gf.

Comparing Gf and MoYe individually with their combination, Combined, we observe that
Combined achieves significantly greater summary edge reductions across all programs, averaging
96.64% for points-to analysis and 93.28% for alias analysis. Additionally, Combined’s performance
trends closely mirror that of the better-performing of the two graph simplification techniques.

Performance Improvement. Figures 13 and 14 present the performance speedups and memory
reduction rates in CFL-reachability analysis achieved by Gf, MoYe, and Combined. Across different
programs, the trends in these two figures align with the summary edge reduction rates, as both Gf
and MoYe enhance CFL-reachability performance by limiting the number of inserted summary
edges, leading to shorter analysis time and lower memory usage.

In points-to analysis for Java, MoYe outperforms Gf with an average speedup of 6.99× (vs. 4.36×)
and a memory reduction of 71.65% (vs. 56.7%). For C/C++ alias analysis, Gf achieves an average
speedup of 4.21× and a memory reduction of 44.28%, while MoYe reaches 15.72× and 80.95%,
respectively. Meanwhile, Combined attains an average speedup of 33.17× (38.28×) and a memory
reduction of 87.89% (88.05%) for points-to (alias) analysis.
Improved Scalability. Table 4 demonstrates how graph simplification greatly improves the

scalability of CFL-reachability analysis for difficult-to-analyze programs. Among the ten Java and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:22 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

av
ro
ra

lu
in
de
x

lu
se
ar
ch

su
nf
lo
w

to
mc
at

tr
ad
eb
ea
ns

tr
ad
es
oa
p
xa
la
n

30%
40%
50%
60%
70%
80%
90%
100%

Gf MoYe Combined

(a) Points-to analysis

na
b xz

le
el
a

x2
64

pa
re
st

30%
40%
50%
60%
70%
80%
90%
100%

Gf MoYe Combined

(b) Alias analysis

Fig. 14. Reduction rates of memory usage achieved by Gf, MoYe and Combined in the all-queries setting.

Table 4. Scalability improvements of Cfl for ten Java and C/C++ benchmarks that could not be analyzed on

original graphs (Tables 2 and 3), using the simplified graphs 𝐺Gf, 𝐺MoYe, and 𝐺Combined generated by Gf,

MoYe, and Combined, respectively, in the all-queries setting.

Benchmark Language
𝐺Gf 𝐺MoYe 𝐺Combined

Time Mem Time Mem Time Mem
batik Java - - - - 6,618.04 4,449.13
eclipse Java 5,602.95 4,645.72 4,435.76 3,345.78 1,128.10 1,552.13
fop Java - - - - - -
h2 Java 18,605.60 9,589.94 11,160.27 6,285.78 3,579.64 3,208.65
pmd Java - - - - 8,127.69 5,307.03

cactus C/C++ - - - - 14,307.28 6,274.87
povray C/C++ 10,681.60 8,920.30 8,216.03 3,589.66 1,901.83 2,039.74
imagick C/C++ - - 11,337.23 4,641.95 2,250.87 2,242.45
omnetpp C/C++ - - 17,980.23 7,983.35 4,908.00 4,979.92

perlbench C/C++ - - - - - -

C/C++ programs Cfl could not complete within six hours (Tables 2 and 3), using the simplified
graphs, 𝐺Gf, 𝐺MoYe, or 𝐺Combined, enabled Cfl to finish analyzing 3, 5, and 8 of these programs,
respectively—underscoring MoYe’s significant impact.

6.6 RQ4: Evaluating MoYe’s Impact on CFL-Reachability in a Batch Setting

In this final RQ, we evaluate MoYe’s performance gains over Cfl and Gf in a demand-driven batch
setting. For each Java or C++ program, we randomly sample 10 query groups 𝑄𝑖 (𝑖 ∈ [1, 10]), each
containing 1% sources (𝑉src) and 1% sinks (𝑉snk). For each 𝑄𝑖 , MoYe generates a set of contributing
edges 𝐸𝑖 . We then invoke Cfl to resolve𝑄𝑖 , starting with a simplified graph𝐺𝑖,start

MoYe and ending with
𝐺
𝑖,end
MoYe, which incorporates the summary edges created by Cfl. Here, 𝐺𝑖,start

MoYe is built incrementally
from 𝐺

𝑖−1,end
MoYe by adding 𝐸𝑖 \

⋃
𝑗∈[1,𝑖−1] 𝐸 𝑗 and their incident nodes (with 𝐺0,end

MoYe being empty). This
incremental construction reuses reachability results (i.e., summary edges) from𝐺

𝑖−1,end
MoYe , obtained

while answering𝑄𝑖−1, to assist with𝑄𝑖 through a well-known caching mechanism [Reps et al. 1995;
Zheng and Rugina 2008]. We define the contributing edge rate for the first 𝑖 batches as |⋃𝑗 ∈ [1,𝑖] 𝐸 𝑗 |

|𝐸 | ,
where 𝐸 is the set of edges in the original graph 𝐺 of the program being analyzed.

In the batch setting, Cfl, Gf, andMoYe handle queries differently, allowing us to evaluate MoYe’s
performance gains below. Both Cfl and Gf are designed for all-pairs reachability with sources
and sinks defined independently of queries (Section 6.1). Consequently, Cfl operates directly on

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:23

1 2 3 4 5 6 7 8 9 10
1
5

10

15

20

25

30

35

40

MoYe over Cfl MoYe over Gf
Combined over Cfl Combined over Gf

(a) Points-to analysis

1 2 3 4 5 6 7 8 9 101

50

100

150

200

250

300

350

400

MoYe over Cfl MoYe over Gf
Combined over Cfl Combined over Gf

(b) Alias analysis

Fig. 15. Speedups achieved by MoYe and Combined over Cfl (w/o simplification) and Gf in the batch setting .

the original graph 𝐺 , answering all queries
⋃

𝑖∈[1,10] 𝑄𝑖 in one run, taking time 𝑡Cfl. Meanwhile,
Gf contracts the same assign-edges for points-to analysis (or 𝑎-edges for alias analysis) for every
batch 𝑄𝑖 , so it runs once per program, incurring a pre-analysis time 𝑝Gf to produce the simplified
graph 𝐺Gf. We then invoke Cfl on 𝐺Gf to answer all queries

⋃
𝑖∈[1,10] 𝑄𝑖 , incurring time 𝑡Gf. In

contrast, MoYe allows queries to be handled on demand. For each query𝑄𝑖 , 𝑝𝑖MoYe is the pre-analysis
time, and 𝑡𝑖MoYe is the main Cfl analysis time (including incrementally adding new contributing
edges and their incident nodes to 𝐺𝑖,start

MoYe). Therefore, MoYe’s speedups over Cfl and Gf for 𝑄𝑖 are
conservatively calculated, including time for previous queries, as follows:

Speedup over Cfl =
𝑡Cfl∑

𝑗∈[1,𝑖]
(
𝑝
𝑗

MoYe + 𝑡
𝑗

MoYe
) , Speedup over Gf =

𝑝Gf + 𝑡Gf∑
𝑗∈[1,𝑖]

(
𝑝
𝑗

MoYe + 𝑡
𝑗

MoYe
) .

Figure 15 givesMoYe’s speedups over Cfl and Gf. For points-to analysis (Figure 15a), we compare
MoYe with Cfl on eight benchmarks and with Gf on ten benchmarks, where Cfl completes within
six hours on 𝐺 and 𝐺Gf, respectively. For alias analysis (Figure 15b), we similarly compare MoYe
with Cfl on five benchmarks and with Gf on six benchmarks, under the same time constraints.

MoYe achieves significant speedups over both Cfl and Gf, though these gains gradually decrease
as the number of batches increases, as expected (due to the way these speedups are calculated).
The rate of decline slows over time. Additionally, MoYe’s pre-analysis overhead remains minimal
compared to Cfl’s main analysis (Section 6.3). In Figure 15, MoYe substantially accelerates Cfl in
both points-to and alias analyses, with performance declining from 7.72× to 7.41× and from 191.93×
to 104.66×, respectively (red line with circle markers). Similarly, MoYe consistently outperforms
Gf, with speedups decreasing from 1.8× to 1.69× and from 30.5× to 17.77× in points-to and alias
analyses, respectively (blue line with triangle markers). These results underscore MoYe’s strong
effectiveness in enhancing CFL-reachability in the batch setting, especially for alias analysis.
In Figure 15, Combined substantially outperforms MoYe, which had been the best performer

among MoYe, Gf, and Cfl, in both points-to and alias analyses (orange lines with square markers;
gray lines with star markers). The speedups of Combined over MoYe range from 4.55× to 4.57× in
points-to analysis and from 2.19× to 2.27× in alias analysis, over 10 batches. These results highlight
the compatibility of MoYe with Gf in further boosting the performance of CFL-reachability analysis.
Table 5 presents the batch-wise contributing edge rates for MoYe and Combined. Table 5a

shows these rates for points-to analysis, while Table 5b covers alias analysis. In each analysis, for
𝑖 ∈ [1, 10],𝑀𝑖 represents the contributing edge rate of the first 𝑖 batches under MoYe, compared to
the all-queries setting (𝑀max). Similarly, 𝐶𝑖 and 𝐶max are the corresponding metrics for Combined.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:24 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

Table 5. Contributing edge rates by MoYe and Combined.𝑀𝑖 (𝐶𝑖) represents the contributing edge rate for

the first 𝑖 batches by MoYe (Combined), while𝑀max (𝐶max) denotes the rates when considering all queries

(𝑉src ×𝑉snk). To save space, 𝑀𝑖/.../𝑗 (𝐶𝑖/.../𝑗) denotes the sequence 𝑀𝑖/· · · /𝑀𝑗 (𝐶𝑖/· · · /𝐶 𝑗). Only programs

on which Cfl terminates on 𝐺 or 𝐺Gf within 6 hours are included.

Batch avrora eclipse h2 luindex lusearch sunflow tomcat tradebeans tradesoap xalan

𝑀1/2 26.27/26.30 23.00/23.09 26.12/26.27 24.16/24.21 23.52/23.53 22.40/22.41 23.99/23.99 23.75/23.75 23.75/23.75 24.07/24.15
𝑀3/4 26.33/26.35 23.13/23.42 26.48/26.64 24.25/24.30 23.54/23.54 22.53/22.54 24.00/24.00 23.76/23.77 23.76/23.76 24.22/24.29
𝑀5/6 26.38/26.40 23.46/23.49 26.77/26.85 24.35/24.40 23.54/23.55 22.55/22.56 24.00/24.01 23.77/23.77 23.76/23.76 24.42/24.50
𝑀7/8 26.42/26.44 23.53/23.57 27.01/27.17 24.45/24.50 23.55/23.56 22.57/22.59 24.01/24.02 23.77/23.78 23.77/23.77 24.56/24.60
𝑀9/10 26.52/26.55 23.62/23.66 27.30/27.39 24.54/24.57 23.56/23.57 22.60/22.60 24.02/24.03 23.78/23.78 23.78/23.78 24.68/24.76
𝑀max 28.98 27.44 34.42 28.27 24.08 23.35 24.46 24.18 24.18 30.53
𝐶1/2 19.08/19.10 16.98/17.01 19.60/19.69 17.38/17.40 17.28/17.28 16.59/16.59 17.62/17.62 17.52/17.52 17.52/17.52 18.81/18.86
𝐶3/4 19.12/19.13 17.02/17.25 19.82/19.93 17.43/17.45 17.28/17.28 16.60/16.60 17.62/17.62 17.52/17.53 17.52/17.52 18.91/18.96
𝐶5/6 19.14/19.15 17.26/17.27 19.99/20.05 17.47/17.50 17.28/17.28 16.60/16.61 17.62/17.62 17.53/17.53 17.52/17.52 19.07/19.12
𝐶7/8 19.16/19.17 17.29/17.32 20.16/20.28 17.53/17.56 17.28/17.29 16.61/16.62 17.63/17.63 17.53/17.53 17.53/17.53 19.16/19.19
𝐶9/10 19.24/19.25 17.34/17.35 20.37/20.43 17.58/17.60 17.29/17.29 16.62/16.63 17.63/17.63 17.53/17.53 17.53/17.53 19.25/19.30
𝐶max 20.84 19.64 25.21 19.89 17.54 17.04 17.85 17.73 17.73 23.82

(a) Points-to analysis

Batch nab xz leela x264 povray parest

𝑀1/2/3 8.30/8.44/8.57 5.44/5.64/5.72 7.39/8.15/9.11 3.17/3.95/4.16 15.75/15.98/16.10 5.81/6.09/6.52
𝑀4/5/6 8.82/8.97/9.07 5.93/6.23/6.24 9.63/10.25/10.52 4.44/4.68/4.89 16.27/16.37/16.63 6.68/6.88/7.12
𝑀7/8/9 9.21/9.35/9.49 6.27/6.31/6.36 10.74/10.87/11.18 5.37/5.58/5.78 16.69/16.76/16.84 7.30/7.51/7.68
𝑀10/max 9.55/25.32 6.41/19.66 11.55/40.72 5.96/29.50 16.93/28.61 7.89/32.11
𝐶1/2/3 5.12/5.18/5.28 3.43/3.56/3.61 3.46/5.23/5.91 1.85/2.05/2.19 8.74/8.89/8.96 3.53/3.71/3.97
𝐶4/5/6 5.45/5.53/5.60 3.75/3.93/3.94 6.28/6.74/6.92 2.40/2.56/2.69 9.08/9.14/9.31 4.07/4.21/4.36
𝐶7/8/9 5.69/5.77/5.88 3.95/3.98/4.02 7.07/7.16/7.40 2.84/2.98/3.12 9.35/9.40/9.44 4.48/4.61/4.71
𝐶10/max 5.92/16.56 4.05/12.53 7.66/27.58 3.24/18.69 9.50/15.95 4.85/19.97

(b) Alias analysis

Query batches often share many 𝐿′-contributing edges due to the regular approximation of 𝐿 into
𝐿′ (Section 4.1), enhancing the caching mechanism for summary edges [Reps et al. 1995; Zheng
and Rugina 2008]. For points-to analysis (Table 5a), 𝑀𝑖 (𝐶𝑖) are slightly lower than 𝑀max (𝐶max).
Consequently, Figure 15a shows marginally higher speedups in the batch setting compared to the
all-queries setting. Since most 𝐿′-contributing edges appear in the first batch (𝑀1, 𝐶1), speedups
decline only slightly over 10 batches. For alias analysis (Table 5b), the batch-based contributing
edge rates for MoYe and Combined are noticeably lower than𝑀max (𝐶max). As a result, both achieve
more significant speedups in the batch setting compared to the all-queries setting (Figure 15b),
with speedups declining more visibly across the 10 batches.

7 Related Work

In this section, we review work closely related to our graph simplication approach, focusing on
CFL-reachability, graph simplification, and grammar regularization.

7.1 CFL-Reachability

Originally developed for Datalog chain queries in the database community [Bravenboer and Smarag-
dakis 2009; Jordan et al. 2016; Yannakakis 1990], CFL-reachability has become a key framework in
program analysis [Reps 1998]. Recent advancements include subcubic algorithms [Chaudhuri 2008;
Zhang et al. 2014], disk-based parallel computation [Wang et al. 2017], transitive redundancy elimi-
nation [Lei et al. 2022a], multi-derivation [Shi et al. 2023, 2024b], skewed tabulation [Lei et al. 2024],
online cycle elimination [Xu et al. 2024], and staged solving [Shi et al. 2024a]. Efficient algorithms
have also been proposed for specialized cases like bidirected Dyck-CFL reachability [Chatterjee et al.
2017; Xu et al. 2009; Zhang et al. 2013]. These efforts focus on boosting efficiency and scalability.
MoYe is orthogonal to these online optimizations and can act as a pre-processing step to further
improve their performance.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:25

7.2 Graph Simplification

Graph simplification techniques, aiming to optimize language reachability by reducing graph size,
must approximate to some degree to minimize pre-analysis runtime overhead, thus preventing
performance declines. Guided by recursive state machines, Gf approximates the states of nodes to
contract trivial edges, extending offline variable substitution methods for general CFL-reachability
problems [Alur et al. 2005; Lei et al. 2023b; Rountev and Chandra 2000]. For interleaved-Dyck
language reachability, a non-context-free scenario, Li et al. [2020] suggest eliminating specific
parenthesis-labeled edges that contribute nothing to interleaved-Dyck paths. This method uses
bidirectionality and independent resolutions of multiple CFLs for efficiency and is not directly
comparable with MoYe. The mutual refinement approach [Ding and Zhang 2023] generalizes this
by intersecting graphs for multiple CFL reachabilities. MoYe, employing regular approximation,
uniquely accelerates client-driven CFL-reachability analysis.

7.3 Regular Approximation and Its Applications

Regular approximation of context-free languages is critical for applications like language recognition
and efficient parsing [Mohri and Pereira 1998; Nederhof 1998]. MN-transformation [Mohri and
Nederhof 2001] is a straightforward and practical technique that maintains grammar readability
and modifiability. While more complex methods for tighter approximations exist [Eğecioğlu 2009],
our experience shows that they often lead to combinatorial explosions with minimal precision gains.
In context-sensitive pointer analysis, CFL-reachability helps identify precision-critical variables or
objects. These are treated context-sensitively to retain analysis precision, while others are handled
context-insensitively to reduce performance costs [He et al. 2021; Lu and Xue 2019]. This involves
verifying conditions against multiple interleaved CFLs, often using regular approximations for
efficiency. In this work, we utilize regular approximation to prune non-contributing edges from the
input graph, significantly enhancing CFL-reachability performance.

8 Conclusion

In this paper, we introduce MoYe, a conceptually simple yet highly effective regularization-based
graph simplification technique for enhancing CFL-reachability analysis. MoYe uses a classic regular
approximation to convert a context-free language into a regular one. By analyzing the transition
rules of a deterministic finite automaton—an equivalent form of a regular language—we identify key
contributing edges for CFL-reachability. Extensive experiments in field-sensitive points-to analysis
for Java and alias analysis for C/C++ show that MoYe not only accelerates CFL-reachability analysis
but also outperforms a leading graph simplification method. When combined with this method,
MoYe delivers further performance gains, underscoring its utility in optimizing CFL-reachability
analysis. In batch settings, MoYe continues to boost CFL-reachability analysis performance.
Future work could explore developing a tighter approximation that maximizes the removal of

non-contributing edges while maintaining the efficiency of pre-analysis. Additionally, tailoring the
approximation specifically for program analysis workloads could be beneficial, as the context-free
grammars used in CFL-based analyses often exhibit simpler structures.

Acknowledgments

We thank all reviewers for their valuable feedback. This work is supported by the National Key
R&D Program of China (2022YFB3103900), the Jiangsu Provincial Key R&D Program (BG2024028),
the National Natural Science Foundation of China (62402474, 62132020, 62202452, and HW2024006),
and the China Postdoctoral Science Foundation (2024M753295).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

287:26 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

Data Availability Statement

Our artifact is publicly available at [Shi et al. 2025].

References

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co., Inc., USA. doi:10.5555/1177220

Karim Ali and Ondřej Lhoták. 2012. Application-Only Call Graph Construction. In ECOOP 2012 – Object-Oriented Program-
ming, James Noble (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 688–712. doi:10.1007/978-3-642-31057-7_30

Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid, Thomas Reps, and Mihalis Yannakakis. 2005. Analysis
of recursive state machines. ACM Transactions on Programming Languages and Systems (TOPLAS) 27, 4 (2005), 786–818.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. 2014. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269. doi:10.1145/2666356.2594299

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,
Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006.
The DaCapo benchmarks: java benchmarking development and analysis. SIGPLAN Not. 41, 10 (oct 2006), 169–190.
doi:10.1145/1167515.1167488

Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011. Taming reflection: Aiding static analysis
in the presence of reflection and custom class loaders. In Proceedings of the 33rd International Conference on Software
Engineering. Association for Computing Machinery, New York, NY, USA, 241–250. doi:10.1145/1985793.1985827

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses. In
Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications.
Association for Computing Machinery, New York, NY, USA, 243–262. doi:10.1145/1640089.1640108

Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2017. Optimal Dyck reachability for data-dependence
and alias analysis. Proceedings of the ACM on Programming Languages 2, POPL (2017), 1–30. doi:10.1145/3158118

Swarat Chaudhuri. 2008. Subcubic algorithms for recursive state machines. In Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 159–169. doi:10.1145/1328438.1328460

Shuo Ding and Qirun Zhang. 2023. Mutual Refinements of Context-Free Language Reachability. In Static Analysis, Manuel V.
Hermenegildo and José F. Morales (Eds.). Springer Nature Switzerland, Cham, 231–258. doi:10.1007/978-3-031-44245-2_12

Ömer Eğecioğlu. 2009. Strongly Regular Grammars and Regular Approximation of Context-Free Languages. In Proceedings
of the 13th International Conference on Developments in Language Theory (Stuttgart, Germany) (DLT ’09). Springer-Verlag,
Berlin, Heidelberg, 207–220. doi:10.1007/978-3-642-02737-6_16

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous java performance evaluation. ACM SIGPLAN
Notices 42, 10 (2007), 57–76. doi:10.1145/1297027.1297033

Ben Hardekopf and Calvin Lin. 2007. The ant and the grasshopper: fast and accurate pointer analysis for millions of lines of
code. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation. 290–299.
doi:10.1145/1273442.1250767

Dongjie He, Yujiang Gui, Wei Li, Yonggang Tao, Changwei Zou, Yulei Sui, and Jingling Xue. 2023. A Container-Usage-Pattern-
Based Context Debloating Approach for Object-Sensitive Pointer Analysis. Proc. ACM Program. Lang. 7, OOPSLA2 (2023),
971–1000. doi:10.1145/3622832

Dongjie He, Jingbo Lu, and Jingling Xue. 2021. Context Debloating for Object-Sensitive Pointer Analysis. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE). 79–91. doi:10.1109/ASE51524.2021.9678880

Dongjie He, Jingbo Lu, and Jingling Xue. 2022. Qilin: A New Framework For Supporting Fine-Grained Context-Sensitivity in
Java Pointer Analysis. In 36th European Conference on Object-Oriented Programming (ECOOP 2022) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 30:1–30:29. doi:10.4230/LIPIcs.ECOOP.2022.30

Dongjie He, Jingbo Lu, and Jingling Xue. 2024a. Artifact of “A CFL-Reachability Formulation of Callsite-Sensitive Pointer
Analysis with Built-In On-The-Fly Call Graph Construction”. doi:10.5281/zenodo.11061891

Dongjie He, Jingbo Lu, and Jingling Xue. 2024b. A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with
Built-In On-The-Fly Call Graph Construction. In 38th European Conference on Object-Oriented Programming (ECOOP
2024). Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2024.18

John Hopcroft. 1971. An n log n Algorithm for Minimizing States in a Finite Automaton. In Theory of Machines and
Computations, Zvi Kohavi and Azaria Paz (Eds.). Academic Press, 189–196. doi:10.1016/B978-0-12-417750-5.50022-1

Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis of program analyzers. In Computer Aided
Verification: 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28. Springer,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

https://doi.org/10.5555/1177220
https://doi.org/10.1007/978-3-642-31057-7_30
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/3158118
https://doi.org/10.1145/1328438.1328460
https://doi.org/10.1007/978-3-031-44245-2_12
https://doi.org/10.1007/978-3-642-02737-6_16
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/1273442.1250767
https://doi.org/10.1145/3622832
https://doi.org/10.1109/ASE51524.2021.9678880
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.5281/zenodo.11061891
https://doi.org/10.4230/LIPIcs.ECOOP.2024.18
https://doi.org/10.1016/B978-0-12-417750-5.50022-1

Fast Client-Driven CFL-Reachability via Regularization-Based Graph Simplification 287:27

422–430. doi:10.1007/978-3-319-41540-6_23
Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang. 2024. Context-Free Language Reachability via Skewed Tabulation.

Proc. ACM Program. Lang. 8, PLDI, Article 221 (jun 2024), 24 pages. doi:10.1145/3656451
Yuxiang Lei, Yulei Sui, Shuo Ding, and Qirun Zhang. 2022a. Taming transitive redundancy for context-free language

reachability. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 1556–1582. doi:10.1145/3563343
Yuxiang Lei, Yulei Sui, Ding Shuo, and Qirun Zhang. 2022b. Artifact of “Taming transitive redundancy for context-free

language reachability”. (2022). doi:10.5281/zenodo.7066401
Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang. 2023a. Artifact of “Recursive State Machine Guided Graph Folding

for Context-Free Language Reachability”. (2023). doi:10.5281/zenodo.7787371
Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang. 2023b. Recursive State Machine Guided Graph Folding for

Context-Free Language Reachability. Proceedings of the ACM on Programming Languages 7, PLDI (2023), 318–342.
doi:10.1145/3591233

Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the performance of flow-sensitive points-to analysis using
value flow. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. Association for Computing Machinery, New York, NY, USA, 343–353. doi:10.1145/2025113.2025160

Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program tailoring: Slicing by sequential criteria. In 30th European
Conference on Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.
4230/LIPIcs.ECOOP.2016.15

Yuanbo Li, Qirun Zhang, and Thomas Reps. 2020. Fast graph simplification for interleaved Dyck-reachability. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 780–793. doi:10.1145/3385412.
3386021

Jingbo Lu and Jingling Xue. 2019. Precision-preserving yet fast object-sensitive pointer analysis with partial context
sensitivity. Proc. ACM Program. Lang. 3, OOPSLA (2019), 148:1–148:29. doi:10.1145/3360574

David Melski and Thomas Reps. 2000. Interconvertibility of a class of set constraints and context-free-language reachability.
Theoretical Computer Science 248, 1-2 (2000), 29–98. doi:10.1016/S0304-3975(00)00049-9

Mehryar Mohri and Mark-Jan Nederhof. 2001. Regular Approximation of Context-Free Grammars through Transformation.
Springer Netherlands, Dordrecht, 153–163. doi:10.1007/978-94-015-9719-7_6

MehryarMohri and Fernando C. N. Pereira. 1998. Dynamic compilation of weighted context-free grammars (ACL ’98/COLING
’98). Association for Computational Linguistics, USA, 891–897. doi:10.3115/980691.980716

Mark-Jan Nederhof. 1998. Context-free parsing through regular approximation (FSMNLP ’09). Association for Computational
Linguistics, USA, 13–24. doi:doi/10.5555/1611533.1611535

Mark-Jan Nederhof. 2000. Regular approximation of CFLs: a grammatical view. In Advances in Probabilistic and other Parsing
Technologies. Springer, 221–241. doi:10.1007/978-94-015-9470-7_12

Thomas Reps. 1998. Program analysis via graph reachability. Information and software technology 40, 11-12 (1998), 701–726.
doi:10.1016/S0950-5849(98)00093-7

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 49–61. doi:10.1145/
199448.199462

Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. 1994. Speeding up slicing. ACM SIGSOFT Software
Engineering Notes 19, 5 (1994), 11–20. doi:10.1145/193173.195287

Atanas Rountev and Satish Chandra. 2000. Off-line variable substitution for scaling points-to analysis. Acm Sigplan Notices
35, 5 (2000), 47–56. doi:10.1145/349299.349310

Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue. 2025. Artifact of "Fast Client-Driven CFL-Reachability
via Regularization-Based Graph Simplification". doi:10.5281/zenodo.16911404

Chenghang Shi, Haofeng Li, Jie Lu, and Lian Li. 2024a. Better Not Together: Staged Solving for Context-Free Language Reach-
ability. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis. Association
for Computing Machinery, New York, NY, USA, 1112–1123. doi:10.1145/3650212.3680346

Chenghang Shi, Haofeng Li, Yulei Sui, Jie Lu, Lian Li, and Jingling Xue. 2023. Two Birds with One Stone: Multi-Derivation
for Fast Context-Free Language Reachability Analysis. In 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE Computer Society, 624–636. doi:10.1109/ASE56229.2023.00118

Chenghang Shi, Haofeng Li, Yulei Sui, Jie Lu, Lian Li, and Jingling Xue. 2024b. PEARL: A Multi-Derivation Approach to
Efficient CFL-Reachability Solving. IEEE Transactions on Software Engineering (2024). doi:10.1109/TSE.2024.3437684

Qingkai Shi, Yongchao Wang, Peisen Yao, and Charles Zhang. 2022. Indexing the extended Dyck-CFL reachability for
context-sensitive program analysis. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 1438–1468.
doi:10.1145/3563339

Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: Fast and precise sparse
value flow analysis for million lines of code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1145/3656451
https://doi.org/10.1145/3563343
https://doi.org/10.5281/zenodo.7066401
https://doi.org/10.5281/zenodo.7787371
https://doi.org/10.1145/3591233
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3360574
https://doi.org/10.1016/S0304-3975(00)00049-9
https://doi.org/10.1007/978-94-015-9719-7_6
https://doi.org/10.3115/980691.980716
https://doi.org/doi/10.5555/1611533.1611535
https://doi.org/10.1007/978-94-015-9470-7_12
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/193173.195287
https://doi.org/10.1145/349299.349310
https://doi.org/10.5281/zenodo.16911404
https://doi.org/10.1145/3650212.3680346
https://doi.org/10.1109/ASE56229.2023.00118
https://doi.org/10.1109/TSE.2024.3437684
https://doi.org/10.1145/3563339

287:28 Chenghang Shi, Dongjie He, Haofeng Li, Jie Lu, Lian Li, and Jingling Xue

Language Design and Implementation. Association for Computing Machinery, New York, NY, USA, 693–706. doi:10.1145/
3192366.3192418

Manu Sridharan, Stephen J Fink, and Rastislav Bodik. 2007. Thin slicing. In Proceedings of the 28th ACM SIGPLAN conference
on programming language design and implementation. 112–122. doi:10.1145/1250734.1250748

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-driven points-to analysis for Java. ACM
SIGPLAN Notices 40, 10 (2005), 59–76. doi:10.1145/1094811.1094817

Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th
international conference on compiler construction. ACM, 265–266. doi:10.1145/2892208.2892235

Yulei Sui and Jingling Xue. 2018. Value-flow-based demand-driven pointer analysis for C and C++. IEEE Transactions on
Software Engineering 46, 8 (2018), 812–835. doi:10.1109/TSE.2018.2869336

Tian Tan and Yue Li. 2023. Tai-e: ADeveloper-Friendly Static Analysis Framework for Java byHarnessing the GoodDesigns of
Classics (ISSTA 2023). Association for ComputingMachinery, NewYork, NY, USA, 1093–1105. doi:10.1145/3597926.3598120

Rei Thiessen and Ondřej Lhoták. 2017. Context transformations for pointer analysis. ACM SIGPLAN Notices 52, 6 (2017),
263–277. doi:10.1145/3062341.3062359

Jyothi Vedurada and V. Krishna Nandivada. 2020. Batch alias analysis. In Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering (San Diego, California) (ASE ’19). IEEE Press, 936–948. doi:10.1109/ASE.
2019.00091

Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani. 2017. Graspan: A single-machine disk-based
graph system for interprocedural static analyses of large-scale systems code. ACM SIGARCH Computer Architecture News
45, 1 (2017), 389–404. doi:10.1145/3037697.3037744

James O. Westgard. n.d.. Lesson 34: What is an acceptable CV? https://westgard.com/lessons/z-stats-basic-statistics/
lesson34.html Accessed: 2025-01-12.

Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-Reachability-Based Points-To Analysis Using
Context-Sensitive Must-Not-Alias Analysis. In ECOOP, Vol. 9. Springer, 98–122. doi:10.1007/978-3-642-03013-0_6

Pei Xu, Yuxiang Lei, Yulei Sui, and Jingling Xue. 2024. Iterative-Epoch Online Cycle Elimination for Context-Free Language
Reachability. Proc. ACM Program. Lang. 8, OOPSLA1, Article 145 (April 2024), 26 pages. doi:10.1145/3649862

Mihalis Yannakakis. 1990. Graph-theoretic methods in database theory. In Proceedings of the ninth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems. 230–242. doi:10.1145/298514.298576

Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang. 2024. Falcon: A Fused Approach to
Path-Sensitive Sparse Data Dependence Analysis. Proc. ACM Program. Lang. 8, PLDI, Article 170 (June 2024), 26 pages.
doi:10.1145/3656400

Qirun Zhang, Michael R Lyu, Hao Yuan, and Zhendong Su. 2013. Fast algorithms for Dyck-CFL-reachability with applications
to alias analysis. In Proceedings of the 34th ACM SIGPLAN conference on Programming language design and implementation.
435–446. doi:10.1145/2491956.2462159

Qirun Zhang, Xiao Xiao, Charles Zhang, Hao Yuan, and Zhendong Su. 2014. Efficient subcubic alias analysis for C. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications.
829–845. doi:10.1145/2660193.2660213

Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for C. In Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 197–208. doi:10.1145/1328438.1328464

Received 2024-10-15; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 287. Publication date: October 2025.

https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1094811.1094817
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1109/TSE.2018.2869336
https://doi.org/10.1145/3597926.3598120
https://doi.org/10.1145/3062341.3062359
https://doi.org/10.1109/ASE.2019.00091
https://doi.org/10.1109/ASE.2019.00091
https://doi.org/10.1145/3037697.3037744
https://westgard.com/lessons/z-stats-basic-statistics/lesson34.html
https://westgard.com/lessons/z-stats-basic-statistics/lesson34.html
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1145/3649862
https://doi.org/10.1145/298514.298576
https://doi.org/10.1145/3656400
https://doi.org/10.1145/2491956.2462159
https://doi.org/10.1145/2660193.2660213
https://doi.org/10.1145/1328438.1328464

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Context-Free Language
	2.2 CFL-Reachability
	2.3 A Motivating Example
	2.4 Graph Simplification

	3 Problem Formulation
	4 Identifying L-Contributing Edges
	4.1 Regularizing L to L'
	4.2 Identifying L'-Contributing Edges

	5 Graph Simplification Algorithm
	5.1 Computing Realizable Configurations
	5.2 Overall Algorithm

	6 Evaluation
	6.1 Implementation
	6.2 Experimental Setup
	6.3 RQ1: Evaluating MoYe's Efficiency as Pre-Analysis
	6.4 RQ2: Evaluating MoYe's Effectiveness in Graph Size Reduction as Pre-Analysis
	6.5 RQ3: Evaluating MoYe's Impact on CFL-Reachability in the All-Queries Setting
	6.6 RQ4: Evaluating MoYe's Impact on CFL-Reachability in a Batch Setting

	7 Related Work
	7.1 CFL-Reachability
	7.2 Graph Simplification
	7.3 Regular Approximation and Its Applications

	8 Conclusion
	Acknowledgments
	References

