
Module-Aware Context Sensitive Pointer Analysis
Haofeng Li†, Chenghang Shi†‡∗, Jie Lu†, Lian Li†‡§∗ and Zixuan Zhao¶

† SKLP, Institute of Computing Technology, CAS, China
‡ University of Chinese Academy of Sciences, China

§ Zhongguancun Laboratory, China
¶ Huawei Technologies Co. Ltd, China

† {lihaofeng, shichenghang21s, lujie, lianli}@ict.ac.cn

Abstract—The Java Platform Module System (JPMS) has found
widespread applications since introduced in Java 9. However,
existing pointer analyses fail to leverage the semantics of JPMS.
This paper presents a novel module-aware approach to improving
the performance of pointer analysis. We model the semantics of
keywords provides and uses in JPMS to recover missing points-to
relations. We design a module-aware context-sensitive analysis,
which can propagate and apply critical contexts (by exploiting
modularity) to balance precision and efficiency better. We have
implemented our module-aware pointer analysis named MPA in
TAI-E and conducted extensive experiments to compare it with
standard object-sensitivity. The evaluation results demonstrate
that MPA finds more reachable methods and enhances existing
context-sensitive approaches, striking a good balance between
efficiency and precision. MPA can increase the number of
reachable methods up to 90.9× (lombok) under the same
analysis. Performance-wise, MPA is nearly as fast as context-
insensitivity for most benchmarks, while its precision is superior
to that of 1-object-sensitivity on average.

Index Terms—Pointer Analysis, Context Sensitivity, JPMS

I. INTRODUCTION

Pointer analysis statically determines the points-to set of a
pointer variable p, i.e., the set of abstract memory locations p
may point to at runtime. Such pointer information serves as a
foundation for an array of applications such as information
flow analysis [1]–[3], program understanding [4], [5], bug
detection [6]–[8], and program optimization [9]–[11], to name
just a few. The ability of a pointer analysis to find more reach-
able methods precisely is crucial for the effectiveness of its
client applications. For example, a taint analysis [1] may fail
to capture information leaks if the underlying pointer analysis
fails to find enough methods. In contrast, the imprecision of a
pointer analysis can lead to over-tainting issues, causing poor
performance and overwhelming false-positive reports, which
makes the taint analysis less practical.

A prevalent approach to enhancing the precision of pointer
analysis is to employ context-sensitivity [12]–[15]. Context-
sensitive pointer analysis decorates a pointer with different
calling contexts (representing distinct runtime paths), where
a context is represented as a sequence of context elements
[ek...e1]. According to context elements, there are three main-
stream variants of context sensitivity, call-site-sensitivity (ei
is call site), object-sensitivity (ei is receiver object), and type-
sensitivity (ei is the type of receiver object or type that con-

∗Corresponding author.

tains the method which allocates receiver object). For object-
oriented programs, object-sensitivity is believed to be a better
choice than call-site-sensitivity [12], [13], and type-sensitivity
is regarded as a more efficient, but less precise alternative
to object-sensitivity [15]. Besides, choosing a proper set of
context elements can also boost the performance and precision
of a pointer analysis [16].

To ease software development and maintenance, modern
software systems are organized into multiple modules, and
commonly implemented based on other projects (such as
standard libraries), which are also organized by modules. The
concept of module system has gained popularity, such as the
Java Platform Module System (JPMS) introduced in Java 9.
The module system provides stronger encapsulation for code
and imposes stricter constraints on access which are critical
semantic information for pointer analysis.

Unfortunately, existing pointer analyses are unaware of
the module system behind the program code. Specifically,
if part of the program semantics is encoded in the JPMS
specification, a pointer analysis would miss certain points-
to relations if the specification is overlooked. For example,
in one of the benchmarks we evaluated (lombok), a standard
implementation of pointer analysis only discovered 16 applica-
tion methods. Moreover, the internal implementation logic of
a module can be quite intricate, which often confuses pointer
analysis. Particularly, a standard k-limiting pointer analysis
always chooses the most recent k context elements, making
it ineffective in choosing appropriate context elements when
analyzing a complex module. As a result, existing techniques
often waste a lot of time for context sensitivity with little
precision gain.

This paper aims to improve the preformance of pointer
analysis for JPMS-based Java programs. Our observation is
two-fold:

• Missing points-to relations. A pointer analysis can find
the originally missed points-to relations when equipped
with the semantics extracted from the JPMS specification.

• Precision. The module system can guide a pointer anal-
ysis to select critical context elements to exploit the
tradeoff between precision and efficiency.

Based on the above insight, we propose the first module-
aware pointer analysis to improve the precision of pointer
analysis for JPMS and recover missing points-to relations. We
have implemented our analysis on top of TAI-E [17], a recent

1819

2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE)

1558-1225/25/$31.00 ©2025 IEEE
DOI 10.1109/ICSE55347.2025.00227

20
25

 IE
EE

/A
CM

 4
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
79

-8
-3

31
5-

05
69

-1
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
55

34
7.

20
25

.0
02

27

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

static analysis framework for Java, and performed extensive
experiments on the DACAPO benchmarks and seven popular
real-world programs. The empirical results demonstrate a dras-
tic improvement in precision and missing reachable methods
by our approach.

To sum up, this paper makes the following contributions:
• We propose to model the semantics of keywords provides

and uses in JPMS to recover missing points-to relations.
• We present a module-aware context-sensitive approach,

which employs critical context elements to exploit a
sweet spot between precision and efficiency. To this end,
we introduce module depth graph (Definition III.1) –
an extension of object allocation graph [18]– with an
efficient on-the-fly construction algorithm.

• We realize our module-aware approach as MPA and
perform extensive experiments on our benchmarks. Em-
pirical results show that MPA finds more reachable
methods and runs as fast as context-insensitivity for
most benchmarks while obtaining better precision than
1-object-sensitivity.

The rest of the paper is organized as follows. Section II
motivates our approach with an example. Section III formally
describes how to model the semantics of keywords provides
and uses in JPMS and apply module-aware context sensitivity.
We evaluate the effectiveness and efficiency of module-aware
pointer analysis in Section IV. Section V reviews related work
and Section VI concludes this paper.

II. MOTIVATION

In this section, we first briefly introduce the module system.
Then we use two examples to illustrate how to improve the
performance of pointer analysis by utilizing the semantics of
the module system.

A. Module System

The module system is gradually being introduced as a first-
class citizen in programming languages. For instance, the
module system was introduced in Java 9 named Java Platform
Module System (JPMS), whose main purpose is to organize
Java applications into modules for encapsulation. To define
a module, JPMS introduces a specific file called “module-
info”, which uniquely defines the name and constraints of
the module. The file begins with a module definition of
the module name using the keyword module. Following the
module definition, five principal directives, namely requires,
exports, provides, uses, and opens, are employed to manage
dependencies, encapsulate module internals, facilitate service
providers and consumers, and reflective access and openness.
The details can be found on the official website of OR-
ACLE [19]. We will introduce these directives with code
examples in the following sections. In addition, C++ 20 also
introduced module system.

B. Service Provider Interface (SPI)

In this section, we will introduce two directives (provides,
uses) and demonstrate their impact on points-to relations.

The SPI is an API that defines a set of plugin-style
services or drivers, allowing applications to discover and load
implementations of specific services at runtime. The idea
behind the SPI is to separate the definitions (interfaces or
abstract classes) of services from their implementations. Since
Java 9, JPMS introduces the two keywords – provides and
uses – to define the mappings from service definitions to
implementations. The SPI scheme, with its features of loose
coupling, extensibility, and dynamic loading, is friendly to
software development but brings a lot of inconvenience to
static program analysis. Due to the separation of interface and
implementation, the implementation classes are not explicitly
initialized in the code, making it impossible for existing
pointer analyses to determine the specific points-to relationship
of interface variables, leading to unsound results.

Let us study SPI since Java 9 with an example in Figure 1.
There are two modules, M1 and M2, in the example. In
M2 module, there are two classes, Dog (lines 16-18) and
Cat (lines 19-21), both of which implement the Animal
interface (lines 13-15). The module-info file of M2 (lines 22-
24) defines the mappings from the Animal interface to its
implementations, Dog and Cat, using the provides keyword.
The M1 module depends on M2 module and uses the Animal
interface according to the keywords, requires and uses, in
lines 9-12. The main method demonstrates the use of the
Java ServiceLoader mechanism to dynamically load and
instantiate classes that implement the Animal interface. The
ServiceLoader is a utility provided by the Java platform
that enables the discovery and loading of service providers at
runtime. At line 2, the ServiceLoader.load() method is
invoked with the Animal interface as its argument, indicating
that we are seeking implementations of this interface. At line
3, an iterator containing implementations corresponding to the
Animal interface is obtained by invoking the iterator()
method of the ServiceLoader. This iterator allows us to
iterate and dynamically instantiate all available implementa-
tions of the Animal interface. According to the module-info
files of M1 and M2, Dog and Cat are the implementations
of the Animal interface. So, the target method at line 6
should be the run method of Dog and Cat. To construct
a complete call graph, the SPI should be modeled precisely
to maintain the mappings from interfaces to implementations.
Firstly, we need to parse the module-info files of M1 and M2
to extract mappings from Animal to Dog and Cat. Then
we need to bind the mappings to variable loader at service
loading points (line 2) and maintain it across the iterator (lines
3-5). Finally, we retrieve implementations from the iterator,
create Dog and Cat objects, assign them to the variable a,
and restore missing points-to relations and call graphs.

C. Precision

In Java 9, the JDK is divided into 99 modules, with the
java.base module being the most fundamental and core
module. It contains essential packages, such as java.lang,
java.util, java.io, etc. Next, we will illustrate how to
enhance the performance of context-sensitive pointer analysis

1820

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

1 void main() {
2 ServiceLoader<Animal> loader =

ServiceLoader.load(Animal.class);
3 Iterator<Animal> iter = loader.iterator();
4 while(iter.hasNext()) {
5 Animal a = iter.next();
6 a.run();
7 }
8 }
9 module M1 {

10 requires M2;
11 uses Animal;
12 }

13 interface Animal {
14 public void run();
15 }
16 class Dog implements Animal {
17 public void run() {}
18 }
19 class Cat implements Animal {
20 public void run() {}
21 }
22 module M2 {
23 provides Animal with Dog, Cat;
24 }

Fig. 1: An example of SPI with two keywords, uses and
provides in JPMS.

by leveraging the semantics of the module system, using a
simplified code example of java.util.HashMap from the
java.base module.

As shown in Figure 2, the simplified code snippet of
HashMap is given in lines 19 to 41. In this module, the
java.util package is exported (line 40), allowing types
in this package to be accessed by modules that require this
module. The HashMap stores data in table, an array of
Node objects (line 20). The put method creates a Node
object and stores it in table (lines 21-24). The get method
retrieves the corresponding Node object from table, then
returns its value via the getValue method (lines 25-28).

There are two modules, M3 and M4, where the methods
foo and bar are defined, respectively. Both modules depend
on the java.base module according to their module-info
files (lines 7-9 and lines 16-18). It should be noted that the
java.base module is always implicitly required by all other
modules, meaning that developers do not need to explicitly
declare a dependency on java.base. In the foo and bar
methods, there are HashMap objects, O1 (line 2) and O2 (line
11), respectively. Object OA is created and put into O1 at line
3, then retrieved back via the get method at line 4. Similarly,
object OB is created and put into O2 at line 12, then retrieved
back at line 13. As a result, the two cast operations (lines 5
and 14) will never fail.

In a 1-object sensitive analysis (abbreviated as 1obj), the
receiver objects for the calls to the put/get methods at
line 3/4 and line 12/13 are O1 and O2, respectively. Hence,
the call to put/get methods at different call-sites can be
distinguished using contexts [O1] and [O2]. In put (lines
21-24), with 1obj analysis, we get pts([O1],n) = {O4}
and pts([O2],n) = {O4}. Then, in the constructor of Node
(lines 31-33), since O4 is the only receiver object, we get

1 void foo() {
2 HashMap map1 = new HashMap();//O1
3 map1.put("A", new A());//OA
4 Object v1 = map1.get("A");
5 A a = (A) v1;//cast may fail?
6 }
7 module M3 {
8 requires java.base;
9 }

10 void bar() {
11 HashMap map2 = new HashMap();//O2
12 map2.put("B", new B());//OB
13 Object v2 = map2.get("B");
14 B b = (B) v2;//cast may fail?
15 }
16 module M4 {
17 requires java.base;
18 }

19 class java.util.HashMap ... {
20 Node[] table = new Node[16];//O3
21 public void put(K k, V v) {
22 Node n = new Node(k, v);//O4
23 table[hash(k)] = n;
24 }
25 public final V get(K k) {
26 Node n = table[hash(k)];
27 return n.getValue();
28 }
29 class Node ... {
30 K key; V value;
31 Node(K p, V q) {
32 key = p; value = q;
33 }
34 public final V getValue() {
35 return value;
36 }
37 }
38 }
39 module java.base {
40 exports java.util to M3, M4;
41 }

Fig. 2: Simplified code example of java.util.HashMap
in java.base module.

pts([O4],value) = {OA, OB}. As a result, call to O1.get
and O2.get will return a value pointing to both OA and OB ,
leading to cast-may-fail false alarms at line 5 and line 14.

This example can only be precisely analyzed when the
context depth is set to more than 1. In put, with 2obj anal-
ysis, we get pts([O1],n) = {⟨[O1], O4⟩} and pts([O2],n) =
{⟨[O2], O4⟩}, where object O4 is qualified with a heap context.
Hence, the constructor of class Node (lines 31-33) is analyzed
twice with 2 distinct contexts: [O1, O4] and [O2, O4]. Thus,
we can precisely compute the pointer values of value as
pts([O1, O4],value) = {OA}, and pts([O2, O4],value) =
{OB}. Finally, we can correctly analyze that pts(v1) = {OA}
and pts(v2) = {OB}, avoiding false cast-may-fail alarms.

It is noteworthy that O1 and O2 are critical context elements
when analyzing the codes of HashMap and Node. We can
also observe that O1 and O2 are the receiver objects for the
put and get methods at lines 3, 4, 12, and 13, which are
module frontiers, whose call-site and target method locate in
distinct modules. For instance, the call-site at line 3 is in M3
module, and the put method is in the java.base module.

1821

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

Hence, we can use the receiver objects (module frontiers) as
key context elements and propagate them when analyzing the
target module. In that sense, O1 and O2 are critical context
elements when analyzing put/get method at line 3/4 and
line 12/13, and they are propagated when analyzing the code
in the target module java.base. Hence, the constructor of
class Node (lines 31-33) is analyzed twice with 2 distinct
contexts: [O1] and [O2]. Thus, we can precisely compute the
pointer values of value as pts([O1],value) = {OA}, and
pts([O2],value) = {OB}.

III. METHODOLOGY

This section formally illustrates module-aware pointer anal-
ysis, including the modeling of SPI and module-aware context
sensitivity according to the semantics of JPMS.

A. Preliminaries

This section presents the notations and functions illustrated
in Figure 3, which will be used in our formalism.

Before integrating the semantics of the module system into
the pointer analysis, we need to extract the semantics from
a given module-info file. Due to space constraints, the details
are omitted. We use the following symbols to represent the
semantic information of a module.
• R: M 7→ ℘(M) maintains the modules a given module

depends on.
• E: (M,M′) 7→ ℘(N) keeps the packages that can be

exported from M module to M′ module.
• P: (M,T) 7→ ℘(T) provides the mappings from interfaces

to implementations.
• U: M 7→ ℘(T) declares the interfaces of SPI used by a

module.
Let us revisit the examples in Figure 1 and Figure 2. For Fig-

ure 1, the results of parsing module constraints are: R(M1) =
{M2}, U(M1) = {Animal}, P(M2,Animal) = {Dog,Cat}.
For Figure 2, the results are: E(java.base,M3) =
{java.util}, E(java.base,M4) = {java.util},
R(M3) = {java.base}, R(M4) = {java.base}.

For forward compatibility, JPMS introduced the concept of
an “automatic module” to migrate pre-existing non-modular
libraries (regular Jar files). A regular Jar file in the classpath
of an application is regarded as an automatic module, which
implicitly requires all other modules, including JDK modules
and all user-defined modules of the application. Moreover,
an automatic module exports all its packages, making them
accessible to other modules of the application. It is worth
pointing out that our approach works identically for both
normal modules and automatic modules.

B. Module-Aware Context-Sensitivity

In this section, we formalize how to utilize the constraints
of the module system to balance the efficiency and precision
of context-sensitive pointer analysis. Section III-B1 presents
the rules for the respective five kinds of statements. In NEW
and CALL, we use module frontier (Section III-B2) as the
critical context element. To apply such the critical context

element (module frontier) to the internal code of a module,
Section III-B3 introduces several subroutines (in Algorithm 1
and Algorithm 2) used in the rules of Section III-B1 to
construct MDG on the fly.

1) Rules of Module-Aware Context-Sensitivity:
Figure 4 illustrates our formalism to pointer analysis.

Fundamentally, this approach aligns with the methodologies
presented in previous works [12], [13], [20] as they all
describe Andersen-style pointer analysis for Java. Without
loss of generality, we use the five rules ([NEW], [ASSIGN],
[LOAD], [STORE], and [CALL]) to handle the respective five
kinds of statements which can represent a simplified subset
of Java. It should be noted that we omit the details found
in previous works. To integrate with module-aware analysis,
the traditional context c1 (receiver objects, call-sites, etc.) is
extended with module-aware elements c2 (module frontiers),
denoted as ⟨c1, c2⟩. Given context c1 with a sequence of
elements c1 = [en, ..., e1] and a new element e, we use
the notation c1 ++e for [en, ..., e1, e] and c1k for [ek, ..., e1]
where k < n. We introduce moduleCtx to select a particular
module-aware context, with additional constraints to model the
semantics of the module system (highlighted in blue).

For the rules [ASSIGN], [LOAD], and [STORE], we have
not made any modifications; we merely extracted the points-
to set of the right-hand side of the statement and incorporated
it into the points-to set of the left-hand side.

In NEW, the declaring method of the statement l ∈ L is
m. For m, we can utilize the classOf function to resolve its
declaring class, which is then used to identify its containing
module M using the moduleOf function. Meanwhile, an
abstract heap object Ol ∈ H of type C is created. Similarly, the
module M′ containing type C is found using the moduleOf
function. According to the semantics of JPMS, the module M
needs to depend on the module M′ (M′ ∈ R(M)), or both
M and M′ have to be the same (M == M′).

In CALL, similar to NEW, we sequentially invoke the
functions methodOf, classOf, and moduleOf, resulting in the
identification of the declaring module M of the statement l.
We can resolve the target method m′ using the dispatch func-
tion, with signature f and receiver object O0 as arguments.
Then we can determine the module M′ in which the type
T ′ (the containing class of m′) is declared. Both modules M
and M′ need to satisfy the constraints of JPMS which have
been discussed in the explanation of NEW. In addition, the
package P of type T ′ should be accessible for module M
(P ∈ E(M′,M)). The function moduleCtx is used to select
the module-aware context. A detailed demonstration will be
provided in the subsequent sections.

moduleCtx(O, c2) =

 [O] depthOf(O,Gmdg) = 0
c2 0< depthOf(O,Gmdg)< d
∅ otherwise

2) Module Frontier:
As mentioned in Section II-C, the receiver object of a

method invoked in another module is a critical context ele-
ment. We define the term module frontier in Definition III.1
to represent this kind of receiver object. We select module

1822

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

modules M ∈ M moduleOf: T 7→ M gives the containing module of a type
packages P ∈ N methodOf: L 7→ W gives the containing method of a statement

types T ∈ T classOf: W 7→ T gives the declaring class of a method
methods m ∈ W packageOf: T 7→ N extracts the package of a type

fields f ∈ F constOf: V 7→ S resolves the constant class literal of a variable
allocation sites Oi ∈ H typeOf: S 7→ T returns the declared type of a constant class literal
local variables x, y ∈ V Gen: L× T 7→ H generates object according to a type

statement labels l ∈ L service: H 7→ T maps from object to service implementation
constant class literal s ∈ S methodCtx:W 7→ ℘(C) maintains the contexts used for analyzing a method

contexts ⟨c1, c2⟩ ∈ C dispatch: W×H 7→ W resolves a call to a target method
actual parameters ai pts: ((V

⋃
H× F)× C) 7→ ℘(H× C) records the points-to for a variable or field

formal parameters pmi retm return variables

Fig. 3: Notations and auxiliary functions used in formalism.

l : x = new C m = methodOf(l)
ctx = ⟨c1, c2⟩ ∈ methodCtx(m) hctx = ⟨c1k−1, c2⟩
M = moduleOf(classOf(m)) M′ = moduleOf(C)

M = M′ | M′ ∈ R(M)
(Ol, hctx) ∈ pts(x, ctx) SolveCaller(m,Ol)

[NEW]
l : x = y m = methodOf(l) ctx ∈ methodCtx(m)

pts(y, ctx) ⊆ pts(x, ctx) [ASSIGN]

l : x = y.f m = methodOf(l)
ctx ∈ methodCtx(m) (O, hctx) ∈ pts(y, ctx)

pts(O.f, hctx) ⊆ pts(x, ctx)
[LOAD]

l : x.f = y m = methodOf(l)
ctx ∈ methodCtx(m) (O, hctx) ∈ pts(x, ctx)

pts(y, ctx) ⊆ pts(O.f, hctx)
[STORE]

l : x = a0.f(a1) m = methodOf(l) ctx ∈ methodCtx(m)
(O0, hctx) ∈ pts(a0, ctx) hctx = ⟨c1, c2⟩ c′2 = moduleCtx(O0, c2) ctx′ = ⟨c1 ++O0, c

′
2⟩

m′ = dispatch(f,O0) T = classOf(m) M = moduleOf(T) T ′ = classOf(m′) M′ = moduleOf(T ′)
P = packageOf(T ′) M = M′ | M′ ∈ R(M) P ∈ E(M′,M)

ctx′ ∈ methodCtx(m′) (O0, hctx) ∈ pts(thism
′
, ctx′)

pts(a1, ctx) ⊆ pts(pm
′

1 , ctx′) pts(retm
′
, ctx′) ⊆ pts(x, ctx) SolveCallee(O0,m

′)

[CALL]

Fig. 4: Rules for module-aware context-sensitive pointer analysis.

frontiers as contexts and propagate them into the target mod-
ules, serving as contexts for the methods within those modules.
However, the number of contexts will increase significantly
if the propagation of module frontiers is not limited. In our
insights, methods closer to the module frontiers are more
significantly affected. Therefore, we designed an efficient
approach to limit the propagation depth of module frontiers.
The details are provided in the following section.

Definition III.1. The Module Frontier is a set of receiver
objects, MF, where Ol ∈ MF is a receiver object of a
target method m′ at a CALL statement, l : x = a0.f(...),
whose declaring method is m. If the corresponding modules
of methods m and m′ are different, Ol is considered a module
frontier. We can define the module frontier more formally using
the following rule.

l : x = a0.f(...) m = methodOf(l) (O0,) ∈ pts(a0,)
m′ = dispatch(f,O0) T = classOf(m) M = moduleOf(T)

T ′ = classOf(m′) M′ = moduleOf(T ′) M ̸= M′

O0 ∈ MF

3) Module Depth Graph:
The module frontier can help us select critical context when

solving context-sensitive pointer analysis. However, when pro-
cessing the code within a module, the information of the
module frontier will be missed. So we need to propagate
the module frontier into the internal code of a module. To
achieve this goal, we propose a module depth graph (MDG).

We can propagate the module frontier along the MDG. In
the meantime, we can limit the propagation depth based on
MDG. Before presenting MDG, we first introduce the Object
Allocation Graph which is the foundation of MDG.

As Definition III.2 shows, the OAG, proposed by Tan
et al. [18], is used to describe the relationship of object
allocation. A path with k nodes in an OAG, such as Ok −→
Ok−1 −→ ... −→ O2 −→ O1, is exactly matched with a context,
[Ok, ..., O2, O1], of a method m for k-object-sensitivity where
O1 is the receiver object of m and O2 is the receiver object
of the method that created object O1, etc.

Definition III.2. The Object Allocation Graph (OAG) is a
directed graph, G = (N,E), where N is the set of nodes and
E represents the set of edges. A node O ∈ N represents an
allocation site which is also the context element in object-
sensitivity. An edge O2 −→ O1 ∈ E represents an object
allocation relation where O1 is allocated in a method with
O2 being the receiver object of this method.

In order to construct OAG, it is necessary to aggregate all
objects along with their respective receiver objects. Previous
work [18] relies on a pre-analysis which is considerably
slower to calculate such relationships. To improve the overall
performance, we design an on-the-fly algorithm to build the
OAG. It is worth noting that the on-the-fly algorithm leverages
context-sensitive points-to information, making it more pre-
cise than the original algorithm. Algorithm 1 introduces two

1823

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

subroutines, SolveCallee and SolveCaller, to build
OAG on-the-fly. In procedure SolveCallee, each object
O′ allocated in method m (computed by the pre-analysis) is
collected. The procedure AddEdge is then invoked to add the
edge O −→ O′ into OAG, signifying that O is the receiver
object of the method allocating O′. The SolveCaller
introduces an edge O → O′ between O′ and each receiver
object O of the method m allocating O′. According to the
definition of the OAG (Definition III.2), receiver objects of
a method m and objects allocated in the method m are two
kinds of primary elements to build an OAG. We focus on two
kinds of statements: the New statement, which creates objects
within a method, and the Call statement, which identifies the
receiver objects of a method. As Figure 4 shows, we extends
the rules of NEW and CALL. In the NEW rule, when an object
Ol is created, the SolveCaller function is invoked with
m and Ol as arguments. In the Call rule, when the receiver
object O0 of m′ is resolved, the SolveCallee function is
invoked with O0 and m′ as arguments. This way, all object
allocation relations can be efficiently computed by extending
rules NEW and CALL (highlighted in cyan), thereby avoiding
a time-consuming pre-analysis.

Algorithm 1: Building object allocation graph

1 global Object allocation graph: G = (N,E);
2 Procedure SolveCallee(O,m):
3 for each object O′ allocated in method m do
4 AddEdge(O,O′);

5 Procedure SolveCaller(m,O′):
6 for each receiver object O of method m do
7 AddEdge(O,O′);

8 Procedure AddEdge(O,O′):
9 add O into N ; add O′ into N ;

10 add O −→ O′ into E ;
11 BuildMDG(O);BuildMDG(O′);

Theorem 1. (Correctness). Both the original OAG algorithm
and the on-the-fly OAG algorithm can construct the same OAG.

Proof Sketch. The WorkList algorithm is usually used to
solve Andersen-style pointer analysis. The algorithm itera-
tively processes statements in a program by applying the rules
in Figure 4. When applying the NEW rule, there will be edges
from all discovered receiver objects of the declaring method
of the NEW statement to the object created at this statement.
Similarly, when applying the CALL rule, there will be edges
from all discovered receiver objects of the target method to
the known objects allocated in the target method. Therefore,
regardless of whether a receiver object O of a method m or
an object O′ allocated in m is discovered firstly, there will
always be an edge, O −→ O′, added to OAG.

Let us apply the on-the-fly algorithm to build the OAG of
the program in Figure 2. Figure 5 shows the resulting OAG
where the object Or represents a unique fake entry object.

Or

OBOA O1 O2

O3 O4

Fig. 5: The OAG of the program in Figure 2
Because the receiver objects of methods foo and bar are
unknown in the code snippet, we use the dashed arrow (99K)
originating Or to represent these unknown edges. Suppose the
foo method is solved first, we can obtain the points-to set
of variable map1, which is {O1} at line 2, and the receiver
object of the constructor of HashMap and the put method is
O1. When solving these two methods, objects O3 and O4 are
created, and the function SolveCaller is applied. In other
words, edges O1 −→ O3 and O1 −→ O4 are added into the
OAG. When solving the bar method, object O2 is generated.
When handling the CALL statements whose target methods are
the constructor of HashMap and the put method respectively,
the function SolveCallee is applied. Because objects O3

and O4 which are allocated in the two methods have been
resolved according to previous steps, the edges O2 −→ O3 and
O2 −→ O4 are added into the OAG.

Leveraging OAG, we can efficiently construct MDG in a
timely manner. The formal definition of MDG is provided in
Definition III.3.

Definition III.3. The Module Depth Graph (MDG) is a
directed graph, G = (⟨N,D⟩, E), where N and E are the
same as that in the OAG, D represents the length of the
shortest path from a module frontier node to the current node.
For ⟨n, d⟩ ∈ ⟨N,D⟩, if n is a module frontier, the d will be
set to zero.

The MDG is built by annotating the OAG with module
depth. As defined in Definition III.3, a node in the MDG is a
pair ⟨n, d⟩, where n is an object in the OAG, and d represents
the propagation depth. Without sacrificing consistency, we
incorporate D into N as a field in our implementation. By
default, d is initialized to the unknown depth ⊤. Algorithm 2
augments the OAG algorithm (Algorithm 1) to build MDG
on-the-fly: when an object O is added into the OAG (line
10 in Algorithm 1), Gather-Apply-Scatter (GAS model) [21]
is performed in lines 2-10 to compute its propagation depth.
If object O is a module frontier, we use the Scatter
procedure to propagate it to its successor nodes whenever
its depth changes. Otherwise, we gather its predecessors and
calculate the minimum propagation depth (lines 13-14). Then,
the minimum value will be increased by 1 and applied to object
O using the Apply procedure (lines 16-21), during which the
depth of O will be updated if the target value is less than
the original depth. The updated depth will be scattered to the
successor nodes (lines 9-10). In the Scatter procedure (lines
22-25), if the depth of an object changes, it will be recursively
scattered to its successor nodes.

Figure 6 illustrates the MDG of the program shown in
Figure 2 constructed using Algorithm 2. As described in
Section III-B3, object O1 is discovered first identified as a
module frontier according to Definition III.1. Therefore, its

1824

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Building module depth graph

1 global Module depth graph:
Gmdg = (⟨Nmdg, D⟩ , Emdg);

2 Procedure BuildMDG(O):
3 if O ∈ MF then
4 if Apply(O, 0) then
5 Scatter(O);

6 else
7 predDepth = Gather(O);
8 if predDepth ̸= ⊤ then
9 if Apply(O, predDepth+ 1) then

10 Scatter(O);

11 Procedure Gather(O):
12 predDepth = ⊤;
13 for each predecessor node ⟨O′, d′⟩ of ⟨O, d⟩ in

Gmdg do
14 predDepth = min(d′, predDepth);

15 return predDepth;

16 Procedure Apply(O, target):
17 Let ⟨O, d⟩ in Gmdg;
18 if target<d then
19 d = target;
20 return true;

21 return false;

22 Procedure Scatter(O):
23 for each successor node ⟨O′, d′⟩ of ⟨O, d⟩ in Gmdg

do
24 if Apply(O′, d+ 1) then
25 Scatter(O′);

⟨Or,⊤⟩

⟨OB ,⊤⟩⟨OA,⊤⟩ ⟨O1, 0⟩ ⟨O2, 0⟩

⟨O3, 1⟩ ⟨O4, 1⟩

Fig. 6: The MDG of the program in Figure 2

depth is set to zero. At this stage, the successors of O1 are
unknown, therefore, the procedure Scatter does nothing.
When objects O3 and O4 are generated, the depth of their
unique predecessor, O1, calculated by the Gather procedure,
is determined to be zero. Consequently, the depths of O3 and
O4 are each set to one. Another module frontier, O2, also
has its depth set to zero upon creation. When the Scatter
procedure is applied, the depths of O3 and O4, which are
successors of O2, remain unchanged.

Let us revisit the [CALL] rule. Before introducing mod-
uleCtx, we use the function depthOf to retrieve the module
depth of object O in the MDG Gmdg . If the depth equals
zero, which means the receiver object O is a module frontier

(O ∈ MF), [O] is regarded as the context in analyzing a
method call with O being a receiver object. When the module
depth is greater than zero and less than d, the heap context
hctx is used as the context of the method. In other words, the
module frontier is selected as critical context and propagated
along the MDG until the depth reaches d. Finally, the module
context and standard context are combined to form the context,
ctx′, of the target method m′.

4) Revisiting the Motivating Example:
Let us apply our module-aware context-sensitivity to per-

form pointer analysis on the example in Figure 2. In foo,
object O1 is created at line 2 and assigned to variable map1
which is the receiver variable of method put. Since O1 is a
module frontier, the context of the method is [O1] at line 3.
Similarly, O2 is created at line 11 and used as the receiver
object of the put method, with its context at line 12 being
[O2]. Consequently, we can differentiate the two invokes of
put based on their distinct contexts. This also allows us to
distinguish the points-to information of the variable v across
different contexts. In put, O4 is generated with two different
heap contexts [O1] and [O2]. Since the receiver object of
the constructor of Node is O4 (with a module depth of 1),
the heap contexts [O1] and [O2] are used as the contexts
of the constructor. Notably, O1 and O2 are module frontiers
propagated to O4 along the MDG. Therefore, the points-
to information of the variable q can be distinguished under
different contexts in line 31. Similarly, the methods get
and getValue can be distinguished based on the contexts
[O1] and [O2]. Ultimately, this analysis allows us to correctly
determine that pts(v1) = {OA} and pts(v2) = {OB}, thereby
avoiding false cast-may-fail alarms.

C. Modeling SPI

Java’s SPI mechanism is now widely used in various
frameworks and libraries to enhance modularity and flexibil-
ity, including JDBC, Dubbo, JNDI, Spring, SLF4J, etc.
However, for pointer analysis, without handling SPI, we may
miss objects that are created dynamically according to SPI
configuration.

To model SPI, we separate it into three parts: loading a
service according to an interface, iterating each implementa-
tion of the service, and applying each implementation. We use
the following three sets to define these parts.
• LOADER, a set of pairs (m, i) where m represents the

method that is used to load service according to a constant
class literal which is the i-th parameter of method m.

• TRANSFER, a set of methods that propagate services from
the receiver variable of the call site to its LHS variable, such
as the iterator method of collection.

• RETRIEVE, a set of methods that are used to retrieve the
implementations of service.
Figure 7 shows the formalization of modeling SPI by the

following three rules.
• [DEF]. For an invoke statement, if its target method, m,

is a LOADER method whose i-th parameter is the service
interface, we can get the constant class literal according

1825

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

l : x = y.f(...) s = constOf(ak) (O,) ∈ pts(x,)
(O0,) ∈ pts(y,) m′ = dispatch(f,O0) (m′, k) ∈ LOADER

m = methodOf(l) M = moduleOf(classOf(m))
M′ = moduleOf(classOf(m′)) T = typeOf(s) T ∈ U(M)

T ′ ∈ P(M′, T) M = M′ | M′ ∈ R(M)
T ′ ∈ service(O)

[DEF]

l : x = y.f(...) (O0,) ∈ pts(y,) (O, ∈ pts(x,)
m′ = dispatch(f,O0) m′ ∈ TRANSFER T ∈ service(O0)

T ∈ service(O)
[PROP]

l : x = y.f(...) ctx ∈ methodCtx(methodOf(l))
(O0,) ∈ pts(y, ctx) m′ = dispatch(f,O0)

m′ ∈ RETRIEVE T ∈ service(O0)
O = Gen(l, T) (O, ctx) ∈ pts(x, ctx)

[USE]

Fig. 7: Rules for modeling SPI.
to the actual parameter ai and resolve its type T by the
function typeOf. It should be noted that when the service
interface type is not directly given as a class literal, we
query its points-to sets to obtain the set of class literals
propagated to it. The only case that cannot be handled is
when the propagated value is from user input. However,
this is an extremely rare case, and we did not encounter
such a case in our evaluated applications. Then we will
check whether current module M uses T by U and get
the implementation T ′ of the interface T according to P.
Then, these implementations will be bound to the object
pointed to by the LHS variable of this invoke statement by
the service function. It should be noted that the points-to
set of the LHS variable may be unknown when processing
this invoke statement, we will bind the implementations to
the LHS variable and rebind them to the objects pointed to
by LHS variable once the points-to set has been resolved.

• [PROP]. For an invoke statement whose target is a TRANS-
FER method, the implementations are propagated from the
object pointed to by the receiver variable of this call site to
the object pointed to by the LHS variable.

• [USE]. The RETRIEVE methods apply an SPI service. For
an invoke statement whose target is a RETRIEVE method,
we use the service function to retrieve implementations
corresponding to the receiver object of this invoke and then
create objects according to these implementations by the
Gen function, and then add these objects into the points-
to set of the LHS variable to maintain complete points-to
relations.

Let us apply the three rules above to perform pointer
analysis on the example in Figure 1. At line 2, there is a
LOADER method, ServiceLoader.load, with a service
interface Animal. According to the module-info files of
modules, M1 and M2, the M1 module uses Animal interface,
and the M2 module provides two implementations, Dog and
Cat. So, we bind Dog and Cat to the objects pointed to by
variable loader which can be represented to service(O1) =
{Dog,Cat}. At line 3, the ServiceLoader.iterator
method is a TRANSFER method, so we just propagate im-
plementations from objects pointed to by variable loader
to objects pointed to by variable iter which means that
service(O2) = {Dog,Cat}. At line 5, the Iterator.next
method is a RETRIEVE method, so we retrieve implementa-

tions, Dog and Cat, from service(O2) and create two objects
Odog and Ocat whose types are Dog and Cat respectively.
Then the points-to set of variable a is {Odog, Ocat}. Finally,
we can resolve the target methods to the run methods of Dog
and Cat at line 6. Without modeling SPI, the points-to set
of variable a is empty, and the run methods of Dog and Cat
will be unreachable. Therefore, more methods can be analyzed
by modeling the SPI.

IV. EVALUATION

To evaluate the impact of our research, we focused on the
following research questions in our assessment of context-
insensitivity, k-object-sensitivity, and MPA which applies our
module-aware approach to pointer analysis:

• RQ1. Does MPA find more reachable methods?
• RQ2. Can MPA improve performance?
• RQ3. Is on-the-fly algorithm of the MDG efficient?
• RQ4. How is the precision and efficiency of MPA under

different depths of MDG?
Experimental Settings: When analyzing a program, we

set the timeout budget to 1.5 hours, consistent with previous
works [16], [22]–[27]. All experiments were conducted on an
Intel Xeon 2.0GHz machine with 1 TB of RAM, running Clear
Linux OS. Since JPMS was introduced in JDK9, differing
from previous works that relied on experiments with JDK1.6,
we analyze programs on JDK17. This Long Term Support
version is also recommended by TAI-E [28]. The maximum
heap size of the JVM is set to 500GB (with -Xmx).

Implementation: We implemented our module-aware ap-
proach on top of TAI-E, a recent popular static analysis
framework for Java. We implemented the on-the-fly algorithms
(Algorithm 1 and Algorithm 2) to build the OAG and the
MDG based on the original algorithm in TAI-E. The default
depth of MDG is set to 4 (d = 4). We use MPA as
module-aware context-insensitive Andersen’s analysis [29].
The notation MPA+kobj represents the MPA scheme applied
to k-object-sensitive analysis.

Benchmarks: Similar to previous works [15], [16], [23]–
[27], we evaluated MPA using the DACAPO suite, where
each JAR file is treated as “automatic modules” by JPMS
to ensure forward compatibility, as these benchmarks were
developed before JPMS. The “automatic modules” require all
other modules implicitly. In DACAPO, jython is excluded
because context-insensitivity fails to scale for it. In addi-
tion, we select three widely used programs (ant, antlr4,
checkstyle) that were migrated from earlier versions of
JDK before JDK9 to JDK9 or later versions, and the three pro-
grams are also treated as “automatic modules” in our module-
aware analysis. At last, we also evaluate against four popular
programs (jboss, logback, questdb, and lombok, with
270, 2.9k, 13.5k, and 12.6k stars on GitHub respectively) that
were developed based on JDK9 or later and fully utilize the
features of JPMS. The diversity selection of both traditional
applications (DACAPO, ant, antlr4, and checkstyle)
and modularized applications (jboss, logback, questdb

1826

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparing the metrics of three programs with
or without modeling SPI (SPI or non-SPI) for context-
insensitive analysis. For all numbers, larger is better.

Programs Analyses Metrics
#fail-cast #reach-mtd #call-edge #poly-call

logback
non-SPI 269 1,711 3,556 162
SPI 277 1,785 3,782 165

lombok
non-SPI 6 16 15 11
SPI 310 1,455 4,146 477

questdb
non-SPI 1,692 14,694 148,158 12,581
SPI 2,590 20,069 315,891 16,015

and lombok) demonstrate that our approach is applicable to
all kinds of Java programs.

Precision Metrics: Following previous works [15], [16],
[23]–[27], we assess the precision of pointer analyses utilizing
four essential metrics: the number of casts that may fail (#fail-
cast), the number of reachable methods (#reach-mtd), the
number of call graph edges (#call-edge), and the number of
polymorphic calls discovered (#poly-call). Same as previous
work [15], we collect the four metrics in the application code,
which is the part that developers are most concerned about.

A. RQ1: Discovering More Reachable Methods

Excluding the DACAPO suite and three programs migrated
from early versions of the JDK that did not utilize the SPI
scheme, we use the remaining four programs to evaluate the
ability to find more reachable methods. For jboss, MPA
cannot find more reachable methods because it does not use
provides. Table I gives the number of four metrics with or
without modeling SPI when analyzing the other benchmarks
under context-insensitivity. For lombok, only 16 application
methods are analyzed without modeling SPI, while 1,455
methods are discovered after modeling SPI. For questdb,
after modeling SPI, 5,375 methods were newly discovered
compared to the original approach. For logback, only 74
methods are newly handled. A similar conclusion can be drawn
for the other three precision metrics.

The following code snippet illustrates the reason for the
significant improvement in reachable methods for lombok. In
the entry method, lombok loads the service of LombokApp
and then invokes the runApp method (lines 2-4). Without
modeling SPI, objects of LombokApp implementations will
be excluded from the points-to set of the variable app,
resulting in the inability to analyze runApp methods of these
implementations.

1 void main() {
2 Iterable apps = SpiLoadUtil.findServices(

LombokApp.class);
3 for (LombokApp app : apps) {
4 app.runApp();
5 }
6 }

The three benchmarks, logback, lombok, and questdb
invoke SPI interfaces once, 10 times, and once, respectively.
As described in Section III-C, traditional pointer analyses
(here, we use context-insensitive analysis) cannot determine
the target methods of those SPI interface invocations, often
resulting in a large number of unreachable methods. Never-
theless, our approach precisely resolves the target methods of

SPI invocations by faithfully modeling the semantics of SPI.
We manually examined each resolved SPI invocation target
and confirmed that there were no false positives. Those newly
discovered SPI invocation targets are then analyzed using
the same context-insensitive analysis, making more methods
invoked by those targets reachable. As a result, we observe a
significant increase across all four metrics in Table I.

B. RQ2: Performance

In this section, we investigate the efficiency and precision
of the module-aware approach by applying MPA to standard
context-insensitive (CI), 1-object-sensitive (1obj), 2-object-
sensitive (2obj), and selective-sensitive (ZIPPERE) pointer
analyses. The SPI modeling is integrated into all tools to
ensure a fair comparison.

Efficiency: Table II gives the time and precision metrics
of all tools for our benchmarks. The times represent the total
time for each analysis. Compared to CI, MPA runs as fast as
CI for most benchmarks such as antlr, eclipse, hsqldb,
luindex, lusearch, etc. On average, MPA is 1.6× slower
than CI for all benchmarks.

Compared to 1obj and 2obj, MPA+kobj can achieve
slight speedup (0.3× and 0.1× respectively) on average, with
precision improvements for all benchmarks.

Precision: As Table II shows, MPA is noticeably more
precise than CI for all precision metrics across all benchmarks.
For #fail-cast, #reach-mtd, #call-edge, and #poly-call, the ratio
of the number reported by MPA against that reported by CI is
54.9%, 97.5%, 96.1%, and 85.2% respectively. Especially for
#fail-cast, MPA can reduce almost half of the false positives
reported by CI on average.

Compared to 1obj, MPA is significantly more precise on
#fail-cast metric and slightly more precise on the other three
metrics on average. For #fail-cast, #reach-mtd, #call-edge, and
#poly-call, the ratio of the number reported by MPA against
that reported by 1obj is 58.7%, 99.0%, 97.7%, and 98.6%
respectively. In addition, MPA+kobj is always more precise
than kobj for all benchmarks.

Compared to ZIPPERE: The last two columns in Table II
compare precision and efficiency of 1obj and MPA+1obj
with or without applying ZIPPERE (the state-of-the-art selec-
tive context-sensitivity approach) on our benchmarks. Con-
sistent with the conclusion in [30], ZIPPERE can achieve
substantial speedup with a slight loss of precision than stan-
dard k-object-sensitivity. Compared to 1obj +ZIPPERE, MDG
+1obj +ZIPPERE offers higher precision, reduces reports
on the metric #fail-cast by 8%, and is only 0.55× slower.
Compared to 1obj, MDG +1obj +ZIPPERE achieves 8.2×
speedup with similar precision.

C. RQ3: Efficiency of MDG Builder

Unlike the original algorithm for OAG construction depend-
ing on a pre-analysis, MPA constructs OAG and MDG on
the fly. To illustrate the efficiency of our on-the-fly algorithm,
we run the standard context-insensitive analysis (CI) equipped
with or without the MDG builder and use the time difference

1827

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Efficiency and precision results for tools on our benchmarks. For all numbers, smaller is better.
Index Program Metrics CI MPA 1obj MPA+1obj 2obj MPA+2obj 1obj +ZIPPERE MDG +1obj +ZIPPERE

1 antlr

Time(s) 61.83 60.66 315.39 312.67 1,882.18 1,916.12 34.14 34.47
#fail-cast 64 38 58 38 30 30 61 38
#reach-mtd 755 755 754 754 754 754 754 754
#call-edge 4,546 4,546 4,545 4,545 4,545 4,545 4,545 4,545
#poly-call 487 483 483 483 483 483 483 483

2 bloat

Time(s) 71.43 113.88 413.37 404.43 2,874.76 2,271.67 49.35 89.21
#fail-cast 1,219 896 1,183 883 958 867 1,189 1,189
#reach-mtd 2,500 2,479 2,486 2,478 2,463 2,459 2,499 2,499
#call-edge 18,866 18,201 18,395 18,002 17,627 17,582 18,552 18,552
#poly-call 1,015 800 822 779 750 746 993 993

3 chart

Time(s) 208.89 1,729.80 4,991.38 2,198.48 - - 136.45 638.91
#fail-cast 607 283 574 275 - - 599 544
#reach-mtd 2,396 2,314 2,391 2,313 - - 2,394 2,389
#call-edge 8,550 8,317 8,509 8,288 - - 8,540 8,513
#poly-call 335 277 314 275 - - 330 311

4 eclipse

Time(s) 82.68 75.88 528.80 344.85 2,114.33 2,213.71 47.03 47.46
#fail-cast 214 151 197 149 141 140 207 185
#reach-mtd 984 939 956 933 927 927 973 972
#call-edge 2,377 2,116 2,315 2,112 2,109 2,109 2360 2290
#poly-call 155 133 144 133 130 130 154 151

5 fop

Time(s) 112.66 204.66 944.38 592.96 4,121.28 3,169.51 74.91 132.41
#fail-cast 136 43 93 43 49 43 103 97
#reach-mtd 1,197 1,023 1,021 1,021 1,021 1,021 1,021 1,021
#call-edge 3,638 3,157 3,156 3,155 3,155 3,155 3,156 3,156
#poly-call 125 71 87 71 71 71 96 95

6 hsqldb

Time(s) 59.17 61.45 308.57 330.11 2,625.69 2,044.25 31.84 31.41
#fail-cast 7 0 4 0 0 0 7 7
#reach-mtd 53 53 53 53 53 53 53 53
#call-edge 79 79 79 79 79 79 79 79
#poly-call 6 6 6 6 6 6 6 6

7 luindex

Time(s) 60.53 59.89 333.28 323.82 2,262.29 2,078.96 30.54 33.76
#fail-cast 44 10 37 6 6 6 40 40
#reach-mtd 353 350 350 347 347 347 350 350
#call-edge 892 891 883 882 882 882 883 883
#poly-call 39 33 29 29 29 29 35 35

8 lusearch

Time(s) 64.65 63.53 326.78 321.43 2,373.99 1,938.67 33.3 35.09
#fail-cast 120 26 112 24 8 8 118 87
#reach-mtd 732 708 727 705 701 701 728 728
#call-edge 2,196 2,094 2,180 2,083 2,082 2,082 2,182 2,182
#poly-call 189 173 169 167 167 167 179 179

9 pmd

Time(s) 86.59 129.55 649.92 477.00 2,714.70 2,434.85 56.86 77.15
#fail-cast 491 363 480 358 380 357 485 476
#reach-mtd 1,752 1,723 1,748 1,723 1,726 1,723 1,748 1,746
#call-edge 5,702 5,647 5,695 5,647 5,654 5,647 5,695 5,693
#poly-call 120 94 112 94 100 92 120 120

10 xalan

Time(s) 130.00 548.14 1,658.19 1,331.16 - - 91.31 157.8
#fail-cast 1,097 707 1,019 698 - - 1,064 964
#reach-mtd 5,245 5,163 5,203 5,118 - - 5,210 5,180
#call-edge 22,819 20,993 22,592 20,942 - - 22,778 22,626
#poly-call 1,952 1,667 1,882 1,663 - - 1,950 1,937

11 ant

Time(s) 71.02 101.59 364.74 382.45 2,449.22 2,247.85 40.52 51.02
#fail-cast 68 38 67 37 31 30 68 68
#reach-mtd 391 373 383 367 362 362 383 383
#call-edge 742 675 726 665 665 665 730 730
#poly-call 87 73 76 66 65 65 86 86

12 antlr4

Time(s) 68.65 71.60 395.64 341.02 2,140.78 2,066.97 39.29 54.52
#fail-cast 692 382 678 376 455 370 686 661
#reach-mtd 2,688 2,656 2,685 2,646 2,650 2,646 2,685 2,685
#call-edge 5,598 5,568 5,593 5,548 5,549 5,548 5,593 5,593
#poly-call 187 146 175 142 151 142 187 187

13 checkstyle

Time(s) 85.27 129.97 514.03 497.06 2,579.87 3,030.36 50.95 74.22
#fail-cast 236 208 228 207 207 207 230 220
#reach-mtd 946 946 945 944 943 942 945 945
#call-edge 2,505 2,504 2,504 2,503 2,503 2,502 2,504 2,504
#poly-call 37 33 19 19 19 19 35 35

14 jboss

Time(s) 87.59 115.03 734.25 521.31 3,009.79 2,244.53 54.19 77.95
#fail-cast 106 56 92 51 50 37 97 97
#reach-mtd 823 814 814 805 769 767 818 818
#call-edge 2,031 1,999 1,995 1,966 1,879 1,878 2,023 2,023
#poly-call 168 132 150 130 128 117 168 168

15 logback

Time(s) 134.10 154.83 973.19 500.75 2,746.72 2,873.99 72.26 100.39
#fail-cast 277 161 255 155 147 135 263 247
#reach-mtd 1,785 1,736 1,758 1,724 1,720 1,720 1,772 1,767
#call-edge 3,782 3,571 3,697 3,563 3,563 3,563 3,779 3,661
#poly-call 165 143 150 134 129 129 162 160

16 lombok

Time(s) 236.19 2,811.02 4,996.46 2,946.13 - - 152.82 294.43
#fail-cast 310 215 304 199 - - 307 291
#reach-mtd 1,455 1,437 1,454 1,436 - - 1,454 1,454
#call-edge 4,146 4,127 4,146 4,126 - - 4,146 4,132
#poly-call 477 433 472 429 - - 476 469

17 questdb

Time(s) 101.85 321.87 908.70 891.50 3,562.37 3,008.23 80.74 85.08
#fail-cast 2,590 2,300 2,553 2,281 623 613 2,553 2,187
#reach-mtd 20,069 19,918 20,037 19,901 19,828 19,828 20,053 19,851
#call-edge 315,891 298,164 311,695 297,972 287,230 287,226 311,837 289,338
#poly-call 16,015 15,630 15,779 15,586 15,544 15,544 15,814 15,601

1828

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

between the two analyses as the time for building the MDG.
Figure 8 shows the percentage of time spent by MDG against
standard context-insensitive analysis. The percentage of the
time for building MDG against the time for CI ranges from
2.4% (antlr4) to 14.3% (xalan), with an average of 7.8%.
Compared to building an MDG using a context-insensitive pre-
analysis, our on-the-fly approach is more efficient.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

10%

Fig. 8: The percentage of time spent by MDG against context-
insensitive analysis. The dashed line represents the average.
D. RQ4: Performance under Different Depths

As described in Section III-B1, as d increases, the number of
contexts increases, and the precision of analyses also improves.
To select suitable d to balance the precision and efficiency, we
evaluate MPA under different d (d = 1,2,3,4,5). Hereafter, we
use MPAi to denote MPA under depth i. In this experiment,
performance-wise, MPA4 outperforms all other variants. In
detail, the ratio of the time spent by MPA1, MPA2, MPA3,
MPA5 against that of MPA4 is 119.48%, 106.17%, 100.25%,
and 100.31% respectively. Importantly, MPA4 achieves the
same precision as MPA5 in all evaluated metrics. Specifically,
the ratio of the number of #fail-cast reported by MPA1,
MPA2, MPA3, MPA5 against that of MPA4 is 155.77%,
108.60%, 100.27%, and 100% respectively. For #reach-mtd,
the ratio is 100.73%, 100.14%, 100%, and 100%. For #call-
edge, the ratio is 101.16%, 100.16%, 100%, and 100%. For
#poly-call the ratio is 108.18%, 102.15%, 100%, and 100%.
As d increases, the improvement in the precision of MPA
slows down. Compared to MPA3, MPA4 only achieves slight
improvement on #fail-cast, and maintains the same precision
on the other three precision metrics. So, we use 4 as the default
value of d.

V. RELATED WORK

In this section, we review the previous works that are closely
related to this research.

A. Context Representation
According to the representation of context, there are three

mainstream variants of context sensitivity: k-object sensitivity,
k-type sensitivity, and k-call-site sensitivity. In addition to
the above three variants, the work [27] proposed a hybrid
approach that applies object sensitivity to instance method in-
vocations and call-site sensitivity to static method invocations.
The value-contexts approach [31] used the data flow values
of parameters to represent contexts. Generic-sensitivity [23]
utilized the generic instantiation sites as contexts. Our module-
aware approach can be adapted to the above context-sensitive
variants by selecting the corresponding kind of context at
module frontiers.

B. Selective Context-Sensitivity

Selective context-sensitivity allows applying context to par-
tial methods or variables to provide a better trade-off between
precision and efficiency. SCALER [26] assesses whether a
method should be analyzed with context sensitivity based
on an estimate of its potential memory usage. ZIPPER [25]
introduces three types of value-flow patterns for pinpointing
methods that are critical for precision, these patterns are deter-
mined by solving a graph reachability problem on a precision
flow graph. Consequently, this allows for substantial speedup
while maintaining most of the precision. The extended version
of ZIPPER, ZIPPER-E [16], significantly enhances ZIPPER’s
speed while maintaining similar precision. EAGLE [24] con-
ducts a pre-analysis based on CFL-reachability to enable
selective context sensitivity in k-obj, ensuring precision is
maintained. TURNER [32] strikes an optimal balance between
ZIPPER and EAGLE, facilitating k-obj analysis to operate much
faster than EAGLE while achieving higher precision than ZIP-
PER. CONCH [32] identifies objects that depend on context,
preventing the excessive growth of contexts. BATON [33]
introduces a Unit-Relay framework by integrating various
context selectors collectively. Rather than choosing which
methods should undergo context-sensitive analysis, BEAN [18]
enhances the precision of k-obj sensitive analysis by omitting
irrelevant context elements, [34] propose a context-tunneling
approach that offers an elegant and general data-driven method
for selecting critical context elements, and [22], [23] introduce
generic-sensitivity which always preserves generic instantia-
tion sites as key context elements. In this paper, we provide
an alternative that specifically targets module systems—we
leverage the semantics of module systems to select module
frontiers, which commonly suggest encapsulation boundaries,
as critical context elements. Moreover, our approach also dis-
covers more reachable methods by modeling SPI. In addition,
some manually-selected metrics and heuristics [35]–[37], or
learning-based approaches [38]–[41] have been imposed to se-
lectively analyze a subset of methods with context sensitivity.

VI. CONCLUSION

We proposed a module-aware pointer analysis including
modeling SPI and module-aware context-sensitivity based on
an on-the-fly MDG. We implemented a pointer analysis tool
named MPA based on our module-aware approach. MPA
can increase reachable methods up to 90.9×. Meanwhile,
the MPA can run as fast as context-insensitivity for most
evaluated programs while obtaining better precision than 1-
object-sensitivity.

VII. ACKNOWLEDGMENT

We thank all reviewers for their valuable feedback. This
work is supported by the National Key R&D Program of China
(2022YFB3103900), the National Natural Science Foundation
of China (62402474, 62132020, and 62202452), and the China
Postdoctoral Science Foundation (2024M753295).

1829

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
259–269. [Online]. Available: https://doi.org/10.1145/2594291.2594299

[2] J. Späth, K. Ali, and E. Bodden, “Ideal: Efficient and precise alias-aware
dataflow analysis,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
Oct. 2017. [Online]. Available: https://doi.org/10.1145/3133923

[3] D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu,
L. Li, and J. Xue, “Performance-boosting sparsification of the ifds
algorithm with applications to taint analysis,” in Proceedings of the
34th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’19. IEEE Press, 2019, p. 267–279. [Online].
Available: https://doi.org/10.1109/ASE.2019.00034

[4] Y. Li, T. Tan, Y. Zhang, and J. Xue, “Program Tailoring: Slicing by
Sequential Criteria,” in 30th European Conference on Object-Oriented
Programming (ECOOP 2016), ser. Leibniz International Proceedings
in Informatics (LIPIcs), S. Krishnamurthi and B. S. Lerner, Eds.,
vol. 56. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016, pp. 15:1–15:27. [Online]. Available: https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2016.15

[5] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” in Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 112–122. [Online].
Available: https://doi.org/10.1145/1250734.1250748

[6] Y. Sui, D. Ye, and J. Xue, “Static memory leak detection using full-
sparse value-flow analysis,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ser. ISSTA 2012. New
York, NY, USA: Association for Computing Machinery, 2012, p.
254–264. [Online]. Available: https://doi.org/10.1145/2338965.2336784

[7] L. Li, C. Cifuentes, and N. Keynes, “Practical and effective symbolic
analysis for buffer overflow detection,” in Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 317–326. [Online]. Available:
https://doi.org/10.1145/1882291.1882338

[8] C. Liu, J. Lu, G. Li, T. Yuan, L. Li, F. Tan, J. Yang, L. You,
and J. Xue, “Detecting tensorflow program bugs in real-world
industrial environment,” in Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’21. IEEE Press, 2022, p. 55–66. [Online]. Available:
https://doi.org/10.1109/ASE51524.2021.9678891

[9] M. Sridharan and R. Bodı́k, “Refinement-based context-sensitive
points-to analysis for java,” SIGPLAN Not., vol. 41, no. 6, p. 387–400,
jun 2006. [Online]. Available: https://doi.org/10.1145/1133255.1134027

[10] Q. Zhang, M. R. Lyu, H. Yuan, and Z. Su, “Fast algorithms for
dyck-cfl-reachability with applications to alias analysis,” SIGPLAN
Not., vol. 48, no. 6, p. 435–446, jun 2013. [Online]. Available:
https://doi.org/10.1145/2499370.2462159

[11] M. Das, B. Liblit, M. Fähndrich, and J. Rehof, “Estimating the impact
of scalable pointer analysis on optimization,” in Proceedings of the
8th International Symposium on Static Analysis, ser. SAS ’01. Berlin,
Heidelberg: Springer-Verlag, 2001, p. 260–278. [Online]. Available:
https://doi.org/10.1007/3-540-47764-0 15

[12] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to and side-effect analyses for java,” in
Proceedings of the 2002 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA ’02. New York, NY,
USA: Association for Computing Machinery, 2002, p. 1–11. [Online].
Available: https://doi.org/10.1145/566172.566174

[13] Milanova, Ana and Rountev, Atanas and Ryder, Barbara G.,
“Parameterized object sensitivity for points-to analysis for java,” ACM
Trans. Softw. Eng. Methodol., vol. 14, no. 1, p. 1–41, jan 2005.
[Online]. Available: https://doi.org/10.1145/1044834.1044835

[14] M. Sharir, A. Pnueli et al., Two approaches to interprocedural data
flow analysis. New York University. Courant Institute of Mathematical
Sciences . . . , 1978.

[15] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your
contexts well: understanding object-sensitivity,” in Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 17–30. [Online].
Available: https://doi.org/10.1145/1926385.1926390

[16] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “A principled approach
to selective context sensitivity for pointer analysis,” ACM Trans.
Program. Lang. Syst., vol. 42, no. 2, may 2020. [Online]. Available:
https://doi.org/10.1145/3381915

[17] T. Tan and Y. Li, “Tai-e: A developer-friendly static analysis framework
for java by harnessing the good designs of classics,” in Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1093–1105. [Online]. Available:
https://doi.org/10.1145/3597926.3598120

[18] T. Tan, Y. Li, and J. Xue, “Making k-object-sensitive pointer
analysis more precise with still k-limiting,” in International Static
Analysis Symposium. Springer, 2016, pp. 489–510. [Online]. Available:
https://doi.org/10.1007/978-3-662-53413-7 24

[19] P. Deitel. (2017) Understanding java 9 mod-
ules. [Online]. Available: https://www.oracle.com/corporate/features/
understanding-java-9-modules.html

[20] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and
E. Yahav, “Alias analysis for object-oriented programs,” in
Aliasing in Object-Oriented Programming. Types, Analysis and
Verification. Springer, 2013, pp. 196–232. [Online]. Available:
https://doi.org/10.1007/978-3-642-36946-9 8

[21] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: distributed graph-parallel computation on natural graphs,”
in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’12. USA: USENIX
Association, 2012, p. 17–30. [Online]. Available: https://www.usenix.
org/conference/osdi12/technical-sessions/presentation/gonzalez

[22] H. Li, T. Tan, Y. Li, J. Lu, H. Meng, L. Cao, Y. Huang, L. Li,
L. Gao, P. Di, L. Lin, and C. Cui, “Generic sensitivity: Generics-guided
context sensitivity for pointer analysis,” IEEE Transactions on Software
Engineering, vol. 50, no. 5, pp. 1144–1162, 2024. [Online]. Available:
https://doi.org/10.1109/TSE.2024.3377645

[23] H. Li, J. Lu, H. Meng, L. Cao, Y. Huang, L. Li, and L. Gao,
“Generic sensitivity: customizing context-sensitive pointer analysis for
generics,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1110–1121. [Online]. Available:
https://doi.org/10.1145/3540250.3549122

[24] J. Lu and J. Xue, “Precision-preserving yet fast object-sensitive
pointer analysis with partial context sensitivity,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, oct 2019. [Online]. Available: https:
//doi.org/10.1145/3360574

[25] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Precision-guided
context sensitivity for pointer analysis,” Proc. ACM Program.
Lang., vol. 2, no. OOPSLA, oct 2018. [Online]. Available: https:
//doi.org/10.1145/3276511

[26] Li, Yue and Tan, Tian and Møller, Anders and Smaragdakis, Yannis,
“Scalability-first pointer analysis with self-tuning context-sensitivity,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 129–140. [Online].
Available: https://doi.org/10.1145/3236024.3236041

[27] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for points-
to analysis,” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
423–434. [Online]. Available: https://doi.org/10.1145/2491956.2462191

[28] T. Tan and Y. Li. (2023) Tai-e: A developer-friendly static analysis
framework for java by harnessing the good designs of classics.
[Online]. Available: https://tai-e.pascal-lab.net/docs/current/reference/
en/setup-in-intellij-idea.html

[29] L. O. Andersen, “Program analysis and specialization for the c program-
ming language,” Ph.D. dissertation, Citeseer, 1994.

[30] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “A principled approach
to selective context sensitivity for pointer analysis,” ACM Trans.
Program. Lang. Syst., vol. 42, no. 2, may 2020. [Online]. Available:
https://doi.org/10.1145/3381915

1830

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

[31] R. Padhye and U. P. Khedker, “Interprocedural data flow analysis
in soot using value contexts,” in Proceedings of the 2nd ACM
SIGPLAN International Workshop on State Of the Art in Java
Program Analysis, ser. SOAP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 31–36. [Online]. Available:
https://doi.org/10.1145/2487568.2487569

[32] D. He, J. Lu, and J. Xue, “Context debloating for object-
sensitive pointer analysis,” in Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’21. IEEE Press, 2022, p. 79–91. [Online]. Available:
https://doi.org/10.1109/ASE51524.2021.9678880

[33] T. Tan, Y. Li, X. Ma, C. Xu, and Y. Smaragdakis, “Making pointer
analysis more precise by unleashing the power of selective context
sensitivity,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA, oct
2021. [Online]. Available: https://doi.org/10.1145/3485524

[34] M. Jeon, S. Jeong, and H. Oh, “Precise and scalable points-to
analysis via data-driven context tunneling,” Proc. ACM Program.
Lang., vol. 2, no. OOPSLA, oct 2018. [Online]. Available: https:
//doi.org/10.1145/3276510

[35] B. Hassanshahi, R. K. Ramesh, P. Krishnan, B. Scholz, and Y. Lu,
“An efficient tunable selective points-to analysis for large codebases,”
in Proceedings of the 6th ACM SIGPLAN International Workshop on
State Of the Art in Program Analysis, ser. SOAP 2017. New York,
NY, USA: Association for Computing Machinery, 2017, p. 13–18.
[Online]. Available: https://doi.org/10.1145/3088515.3088519

[36] S. Wei and B. G. Ryder, “Adaptive Context-sensitive Analysis
for JavaScript,” in 29th European Conference on Object-Oriented
Programming (ECOOP 2015), ser. Leibniz International Proceedings in
Informatics (LIPIcs), J. T. Boyland, Ed., vol. 37. Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015, pp. 712–
734. [Online]. Available: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.ECOOP.2015.712

[37] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective
analysis: context-sensitivity, across the board,” in Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 485–495. [Online]. Available:
https://doi.org/10.1145/2594291.2594320

[38] S. Jeong, M. Jeon, S. Cha, and H. Oh, “Data-driven context-sensitivity
for points-to analysis,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
oct 2017. [Online]. Available: https://doi.org/10.1145/3133924

[39] M. Jeon, S. Jeong, S. Cha, and H. Oh, “A machine-learning algorithm
with disjunctive model for data-driven program analysis,” ACM Trans.
Program. Lang. Syst., vol. 41, no. 2, jun 2019. [Online]. Available:
https://doi.org/10.1145/3293607

[40] M. Jeon, M. Lee, and H. Oh, “Learning graph-based heuristics for
pointer analysis without handcrafting application-specific features,”
Proc. ACM Program. Lang., vol. 4, no. OOPSLA, nov 2020. [Online].
Available: https://doi.org/10.1145/3428247

[41] M. Jeon and H. Oh, “Return of cfa: call-site sensitivity can be superior
to object sensitivity even for object-oriented programs,” Proc. ACM
Program. Lang., vol. 6, no. POPL, jan 2022. [Online]. Available:
https://doi.org/10.1145/3498720

1831

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 26,2025 at 01:15:25 UTC from IEEE Xplore. Restrictions apply.

