
Be�er Not Together: Staged Solving for Context-Free Language
Reachability

Chenghang Shi∗

SKLP, Institute of Computing Technology, CAS
University of Chinese Academy of Sciences

Beijing, China

Haofeng Li∗†

SKLP, Institute of Computing Technology, CAS
Beijing, China

Jie Lu∗

SKLP, Institute of Computing Technology, CAS
Beijing, China

Lian Li∗†

SKLP, Institute of Computing Technology, CAS
University of Chinese Academy of Sciences

Zhongguancun Laboratory
Beijing, China

Abstract

Context-free language reachability (CFL-reachability) is a funda-

mental formulation for program analysis with many applications.

CFL-reachability analysis is computationally expensive, with a

slightly subcubic time complexity concerning the number of nodes

in the input graph.

This paper proposes staged solving: a new perspective on solving

CFL-reachability. Our key observation is that the context-free gram-

mar (CFG) of a CFL-based program analysis can be decomposed

into (1) a smaller CFG, L, for matching parentheses, such as pro-

cedure calls/returns, �eld stores/loads, and (2) a regular grammar,

R, capturing control/data �ows. Instead of solving these two parts

monolithically (as in standard algorithms), staged solving solves

L-reachability and R-reachability in two distinct stages. In prac-

tice, L-reachability, though still context-free, involves only a small

subset of edges, while R-reachability can be computed e�ciently

with close to quadratic complexity relative to the node size of the

input graph. We implement our staged CFL-reachability solver,

Stg, and evaluate it using two clients: context-sensitive value-�ow

analysis and �eld-sensitive alias analysis. The empirical results

demonstrate that Stg achieves speedups of 861.59x and 4.1x for

value-�ow analysis and alias analysis on average, respectively, over

the standard subcubic algorithm. Moreover, we also showcase that

staged solving can help to signi�cantly improve the performance

of two state-of-the-art solvers, Pocr and Pearl, by 74.82x (1.78x)

and 37.66x (1.7x) for value-�ow (alias) analysis, respectively.

CCS Concepts

• Theory of computation → Grammars and context-free lan-

guages.

∗{shichenghang21s, lihaofeng, lujie, lianli}@ict.ac.cn
†Corresponding author

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680346

Keywords

CFL-rechability, Performance, Staged Analysis

ACM Reference Format:

Chenghang Shi, Haofeng Li, Jie Lu, and Lian Li. 2024. Better Not Together:

Staged Solving for Context-Free Language Reachability. In Proceedings of

the 33rd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3650212.3680346

1 Introduction

Context-free language reachability (CFL-reachability) serves as a

fundamental framework for program analysis [17]. A large number

of program analyses, such as pointer analysis [26, 28, 38], inter-

procedural data�ow analysis [2, 19], program slicing [20, 27], and

shape analysis [17] can be formulated as CFL-reachability problems.

A CFL-reachability instance consists of (1) an edge-labeled input

graph � modeling the program under analysis, and (2) a context-

free language ! that captures the program properties to be analyzed.

Two nodes are considered to be CFL-reachable if there exists a path

between them, such that the word obtained by concatenating the

labels of the edges on the path is a member of language !.

CFL-reachability analysis is time-intensive. The standard algo-

rithm [15] has a cubic time complexity with respect to the number

of nodes in the input graph� , and the complexity can be optimized

to subcubic by leveraging fast set operations of bit vectors [5]. How

to further reduce the time complexity of general CFL-reachability

solving algorithms remains an open question [15]. Nevertheless,

for certain CFL-rechability problems, the characteristics of their

underlying context-free languages can be exploited to reduce the

complexity further. For instance, when ! is a regular language, the

reachability problem can be solved in $ (<=) time [35], where<

and= are the numbers of edges and nodes in the input labeled graph

� , respectively. In practice,� tends to be sparse, with< being$ (=).

Hence, for regular language reachability problems, the algorithm

in [35] achieves greater e�ciency compared to the state-of-the-art

subcubic algorithm [5].

Insight. We observe that, for every CFL-based program analy-

sis problem that we are aware of, the corresponding context-free

grammar (CFG) comprises two components: (1) a context-free part

modeling properly matched parentheses [9, 13], such as procedure

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1112

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0003-3055-8929
https://orcid.org/0009-0008-0931-8767
https://orcid.org/0000-0002-4162-0404
https://orcid.org/0000-0002-4476-0541
https://doi.org/10.1145/3650212.3680346
https://doi.org/10.1145/3650212.3680346
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680346&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenghang Shi, Haofeng Li, Jie Lu, and Lian Li

calls and returns [19, 32], �eld loads and stores [28, 34], or pointer

references and dereferences [38], and (2) a regular part capturing

control/data �ow. In light of this observation, we propose a staged

solving approach, Stg, to enhance the scalability of CFL-reachability

solving. Speci�cally, Stg decomposes a given CFG into two gram-

mars: a smaller CFG L and a regular grammar R (where “smaller”

implies fewer edges involved). These two grammars are solved

separately: L-reachability, which is more complex, derives only

a small subset of edges, while R-reachability tackles the majority

of the edges and can be computed e�ciently in $ (<=) time, with

< = $ (=) in practice. In contrast, the standard algorithm resolves

all edges together, resulting in signi�cantly lower e�ciency.

Challenges. Two technical challenges arise in staged solving: (1)

how to decompose a given CFG into L and R? This is challenging

due to the pervasivemutual dependency of productions, and (2) how

to solve L-reachability and R-reachability e�ciently? To address

the �rst challenge, we introduce a pattern-based grammar rewriting

technique. The context-free pattern (CFP) is introduced to capture

the context-free aspect of a CFG and it is the key to enable staged

solving. We identify two frequently encountered CFPs in CFL-based

program analyses and apply them to a wide range of applications.

To address the second challenge, we devise e�cient algorithms for

both L- and R-reachability, ultimately improving the e�ectiveness

of CFL-reachability analysis.

We develop an e�cient staged CFL-reachability solver, Stg, and

apply it to two popular clients. The empirical results show that Stg

achieves drastic speedups over state-of-the-art approaches [11, 23].

To sum up, this paper makes the following contributions:

• We propose staged solving, a novel approach to improve

the scalability of CFL-reachability analysis. Given a CFL-

reachability problem, staged solving aims to decompose the

underlying CFG into two grammars: a smaller CFG L and a

regular grammar R, and solve them in two distinct phases.

• We introduce context-free patterns (CFPs) to capture the

context-free aspect of a CFG, and propose a principled tech-

nique called CFP-based grammar decomposition to enable

staged solving.

• We devise and implement e�cient algorithms for solving

both L- and R-reachability in staged solving.

• We realize our approach in an e�cient solver, Stg, and apply

it to context-sensitive value-�ow analysis and �eld-sensitive

alias analysis for C/C++. The experimental results demon-

strate that staged solving can obtain average speedups of

861.59x and 4.1x for value-�ow analysis and alias analy-

sis, respectively, over the standard subcubic algorithm [5].

Furthermore, We also showcase that staged solving can im-

prove the performance of two recent solvers, Pocr [11] and

Pearl [23], with speedups of 74.82x (1.78x) and 37.66x (1.7x)

for value-�ow (alias) analysis, respectively.

The remainder of this paper is organized as follows: Section 2

provides an overview of CFL-reachability and illustrates our core

idea using a motivating example. Section 3 elaborates on our staged

solving approach, which is assessed in Section 4. Section 5 reviews

related works, and Section 6 concludes this paper.

2 Motivation

In this section, we �rst review the background on CFL-reachability,

and then describe the bene�ts and challenges of staged solving

using an example of Dyck-CFL-reachability.

2.1 CFL-Reachability

A CFL-reachability instance consists of: (1) an edge-labeled graph

� = (+ , �), where + and � are node set and edge set of � , respec-

tively, and (2) a context-free grammar CFG = (#, Σ, %, (). In the

CFG, # is a �nite set called the nonterminals, and Σ is a �nite set,

disjoint from # , called the terminals; % is a set of production rules,

each of which is of the form U → V , where U ∈ # is a nonterminal

and V ∈ (# |Σ)∗ is a string of nonterminals and/or terminals; (∈ #

is the start variable. By convention, we use lowercase letters to

denote terminals, and uppercase letters to represent nonterminals.

Each edge in � is labeled by a symbol U ∈ (# ∪ Σ), e.g., D
U
−→ E

denotes an edge from Node D to Node E labeled by U . For each

path ? in � , a word spelled by ? is obtained by concatenating the

edge labels along the path in order. A path is termed an - -path if

its word can be derived from nonterminal - through one or more

productions in % . Upon discovering an - -path from D to E during

CFL-reachability solving, an - -edge D
-
−→ E is incorporated into

the edge-labeled graph. The standard algorithm [15] iteratively

generates edges until a �xed point, by applying productions in % to

already existing edges. For example, production - → . / derives

D
-
−→ F if there exist two edges D

.
−→ E and E

/
−→ F in �.

2.2 Motivating Example

We motivate our approach with an example of context-sensitive

value �ow analysis. Figure 1a and Figure 1b depict the code snip-

pet and its corresponding edge-labeled graph (with an additional

summary edge 1
(
−→ 3), respectively. Following [11], we utilize the

Dyck language shown in Figure 1c to model context-sensitive value

�ow analysis [31]. Here the empty string n represents a self-loop

edge. An B-edge D
B
−→ E signi�es an assignment from variable D

from E ; L8 indicates an assignment from an actual argument to a

formal parameter at the 8-th call site; M8 denotes an assignment from

a return value to its receiver at the 8-th call site.

Initially, a self-loop edge D
n
−→ D is introduced for every Node D

in the input graph. For clarity, self-loop edges and (-edges derived

from singleton B-edges are omitted in Figure 1b and Figure 1e.

Standard Algorithm. The standard algorithm generates new

edges until it reaches a �xed point, where no additional edges can

be derived. For instance, in Figure 1b, the (-edge 0
(
−→ 2 (omitted

in the graph) is deduced from the input edge 0
B
−→ 2 , and 1

(
−→ 3

is produced by the path 1
L8
−→ 0

(
−→ 2

M8
−→ 3 . In addition to its

(sub)cubic complexity, the standard algorithm su�ers further from

a performance loss caused by redundant edge processing. Consider

the path 5
(
−→ 1

(
−→ 3

(
−→ 4 in Figure 1b, the edge 3

(
−→ 4 may be

visited twice: once for 1
(
−→ 3 and once for 5

(
−→ 3 (derived by

5
(
−→ 1

(
−→ 3). Note that such redundancy can be avoided if we

follow the topological order and process the edge 3
(
−→ 4 after both

1113

Be�er Not Together: Staged Solving for Context-Free Language Reachability ISSTA ’24, September 16–20, 2024, Vienna, Austria

void bar() {

if (*)

b = f;

else

b = h;

d = foo(b);

e = d;

}

int foo(int a) {

while (*) {

i = ...;

g = i;

i = g+1;

}

if (*) a = g;

c = a;

return c;

}

(a)

f g

h b a

cde

i

ss

s L8

s

M8s

s

s

S

(b)

(→ ((| L8 (M8 | B | n

(c)

L: Sum → L8 (Sum | B)∗M8

R: (→ (Sum | B)∗

(d)

f g i

h b a

cde

ss

s

s

s

SumSS

S S

S

(e)

Figure 1: A motivating example. (a) The code snippet. (b) The corresponding input graph, with an additional summary edge

1
(
−→ 3 . (c) The context-free grammar (CFG) of Dyck CFL [9]. (d) The decomposed CFG. (e) Staged solving resolves the Sum-edge

in PhaseL (the wavy line), and derives (-edges in PhaseR (dash lines).

5
(
−→ 3 and 1

(
−→ 3 have been generated. In this way, two edges

can be processed in one set operation [5]. However, establishing a

proper order is challenging due to dynamically introduced edges

such as 1
(
−→ 3 .

Staged Solving. Figure 1d and Figure 1e demonstrate the core

idea of staged solving. Figure 1d illustrates the decomposition of

the original CFG for Dyck CFL into two components: L and R. L

captures the context-free nature of the CFG (L8 (M8) to compute

summary edges using the production (D< → L8 ((D< | B)∗M8 ,
and R is a regular grammar dedicated to computing all remaining

reachability edges.L-reachabiltiy andR-reachability are separately

addressed in PhaseL and PhaseR, respectively. In PhaseL, a sum-

mary edge 1
Sum
−−−→3 (the wave line in Figure 1e) is generated. In

PhaseR, all (-edges (the dashed lines in Figure 1e) are derived by

e�ciently solving a regular language reachability problem.

Compared to the standard algorithm, staged solving o�ers the

following two advantages:

(1) Reduced Complexity. While L in Figure 1d remains context-

free, it focuses solely on a narrow subset of edges (input edges

and 1
Sum
−−−→ 3 in Figure 1e). The majority of edges are computed

during PhaseR (dashed lines in Figure 1e) by solving R-reachability

in$ (<=) time, where the edge size< is typically linear to the node

size = in practice. Consequently, staged solving lowers complexity

and drastically improves performance over the standard algorithm.

(2) Reduced Redundancy. The decomposition of the grammar in

Figure 1c to that in Figure 1d ensures the prioritization of (D<-

edges (addressed in PhaseL) over (-edges (addressed in PhaseR). For

instance, in Figure 1e, the (D<-edge 1
Sum
−−−→ 3 is generated before

computing (-edges in PhaseR. Additionally, a topological order can

be established with strongly connected components collapsed (e.g.,

Node 6 and Node 8 are consolidated as one node in Figure 1e) when

solving R-reachability. As a result, we can process nodes in the

topological ordering of (5 , ℎ, 1, 3, 4, {68}, 0, 2), thereby ensuring that

each edge is processed only once and eliminating redundancy.

2.3 Problem Statement

Staged solving shares some similarities with bottom-up interproce-

dural analysis [6, 16]: in staged solving, the concept of a function

summary is generalized to summarize certain reachable paths (e.g.,

paths derived by the production (→ L8 (M8 in Figure 1c). An im-

mediate question arises: which paths need to be summarized? We

address the question by summarizing paths derived using context-

free productions, so that the remaining paths can be expressed in a

regular grammar. This involves introducing new nonterminals for

context-free productions and, subsequently, rewriting the grammar

to decompose it into a context-free part and a regular part.

Given a CFL-reachability analysis problem, staged solving aims

to address the following two challenges.

Challenge 1: Decompose the input CFG into a context-free gram-

mar L (for summary edges) and a regular grammar R (for re-

maining edges), such that L does not depend on R, which means

L-reachability can be solved without concerning R-reachability.

Challenge 2: Solve L- and R-reachability in sequence in two

distinct phases, and develop e�cient algorithms for both phases.

Our Solution. Determining how to resolve the inherent mutual

dependency among di�erent productions, such as (→ ((and

(→ L8 (M8 in Figure 1c, is crucial for addressing challenge

1. In response, we propose a principled, pattern-based grammar

rewriting technique (Section 3). To tackle challenge 2, we develop

e�cient algorithms that incorporate practical optimizations, such

as ordered propagation, to solve both L- and R-reachability.

3 Methodology

In Section 3.1, we present the key idea of staged solving, accompa-

nied by the concept of context-free patterns (CFPs) and CFP-based

grammar decomposition. We then introduce two frequently encoun-

tered CFPs in CFL-based program analyses, respectively in Sec-

tion 3.2 and Section 3.3, along with practical applications and opti-

mized algorithms for fastL-reachability solving. At last, we propose

an e�cient algorithm to compute R-reachability in Section 3.4.

3.1 CFP-Based Grammar Decomposition

We introduce a pattern-based approach for grammar decomposition.

The approach is applicable to all CFL-based program analyses, to

our knowledge.

3.1.1 Context-Free Pa�ern. We observe that, for all CFL-based

program analyses we are aware of, the context-free aspect of a CFG

manifests as speci�c patterns, called context-free patterns.

1114

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenghang Shi, Haofeng Li, Jie Lu, and Lian Li

(C0AC → % #

% → (% | M8 % | n

→ (# | L8 # | n

(→ ((| L8 (M8 | B | n

(a) The original CFG.

L : Sum → L8 (M8

R : (C0AC → (Sum | B | M8)
∗ (Sum | B | L8)

∗

% → (Sum | B | M8)
∗

→ (Sum | B | L8)
∗

(→ (Sum | B)∗

(b) After rewriting %R .

L: Sum → L8 (Sum | B)∗M8

R: Start → (Sum | B | M8)
∗ (Sum| B | L8)

∗

% → (Sum | B | M8)
∗

→ (Sum | B | L8)
∗

(→ (Sum | B)∗

(c) The decomposed CFG (after rewriting %L).

Figure 2: The context-free grammar (CFG) for Extended Dyck-CFL-reachability [9], Start is the start variable. In (c), % , # , and (

in R can be removed because Start does not depend on them.

De�nition 1. (Context-Free Pattern). Given a CFG = (#, Σ, %, (),

let CFP = ((′, 0, �, 1) be a context-free pattern, where (′ is a non-

terminal representing summary edges, 0 and 1 denote a pair of

terminals, and � is a regular expression over # ∪ Σ. A context-free

pattern is explicitly written as (′ → 0 � 1.

In essence, a CFP captures the context-free aspect of a CFL-based

program analysis by matching terminals 0 and 1 (e.g., calls and

returns [9], �eld writes and reads [28]), while modelling transitive

control/data �ow with expression �. Despite its simplicity, the

formulation of a context-free pattern (CFP) here can cover a wide

range of CFL-based program analysis problems, including, but not

limited to shape analysis [17], slicing [27], interprocedural data-

�ow analysis [19] and pointer analysis [28, 38].

Observation 1. After resolving reachability related to CFPs in

a CFG, we can reformulate the corresponding CFL-reachability

problem as a regular language reachability problem.

Staged solving is motivated by Observation 1. Given a CFG, its

CFPs can be separately reformulated as a smaller CFG L, making

the remaining part a regular grammar R. Unfortunately, it is not

straightfoward to decompose an input CFG due to the inherent

mutual dependency between its productions. For instance, given a

CFP (′ → 0 � 1 where � contain another nonterminal - , (′-

reachability and - -reachability may be mutually dependent. How

to address such mutual dependency is the key enabling technique

for staged solving.

3.1.2 CFP-Based Grammar Decomposition. To tackle mutual de-

pendency, we propose a principled technique called CFP-based

grammar decomposition. Essentially, given CFG = (#, Σ, %, () and

a CFP instance (′ → 0 �2 1 (�2 is a concrete string that follows

the regular pattern described by the CFP), grammar decomposition

consists of the following steps:

(1) Introduce the production (′ → 0 �2 1. The nonterminal (′

is introduced if (′ ∉ # , to summarize paths with sequence

0 �2 1. This step conceptually divides the production set %

of ��� into two parts: the context-free portion %L contain-

ing the newly introduced production for (′, and the regular

portion %R consisting of the remaining productions. Despite

this separation, mutual dependency persists between pro-

ductions in %L and %R .

(2) Rewrite productions in %R . In this step, we rewrite each pro-

duction ? in %R , by �rstly replacing the pattern 0 �2 1 to

(′. Under Observation 1, this replacement reduces %R to

regular productions. Hence, we reformulate the right-hand

size of each production in %R into a regular expression over

Σ ∪ {(′}, using standard grammar transformation rules.

(3) Rewrite production of (′ in %L . For any nonterminal- occurs

in production of (′ where - ≠ (′ and - → Exp ∈ %R , we

replace - with Exp, which is a regular expression over Σ ∪

{(′} after rewriting %R (step 2). As a result, the production

of (′ now contains only symbols in Σ ∪ {(′}, e�ectively

eliminating dependency from %L to %R , which is pivotal for

staged solving.

(4) Decompose CFG. The grammar after steps 1-3, CFG′
= (# ∪

{(′}, Σ, %L ∪ %R , (), is decomposed into L and R, such that

(1) L = ({(′}, Σ, %L , (
′) resolves the input CFP; and (2) R =

(# \ {(′}, Σ ∪ {(′}, %R , () is a regular grammar where (′

serves as a terminal in R.

The above grammar decomposition can be easily extend to the

general cases with multiple CFP instances by introducing a produc-

tion for each CFP instance in %L .

3.1.3 Soundness. This subsection discusses the soundness of staged

solving.

Lemma 1. (Grammar Equivalence). CFG = (#, Σ, %, () is equiva-

lent to CFG′
= (# ∪ {(′}, Σ, %L ∪ %R , (), which is the CFG after

steps 1-3 in CFP-based decomposition.

Proof Sketch. Grammar decomposition employs standard trans-

formation rules, which apply only algebraic substitution to existing

productions. Therefore, % is semantically equivalent to the union of

%L and %R , i.e., %L ∪ %R . Thus, both grammars generate the same

language and produce the same set of (-edges. □

Lemma 2. (Separate Solving). L-reachability can be resolved

soundly independent of R-reachability.

Proof Sketch. Productions in %L does not contain any nontermi-

nals of R. Thus, R does not produce any edges that contributes to

L-reachability. □

Theorem 1. Staged solving soundly solves CFL-reachability.

Proof Sketch. According to Lemma 2,L-reachability can be solved

without concerning R-reachability. Hence, by addressing %L �rst

and then %R , staged solving soundly resolves %L ∪%R (correspond-

ing to CFG′). Due to Lemma 1, we conclude that staged solving

correctly solves CFL-reachability de�ned by CFG. □

3.2 The Dyck CFP

The Dyck CFP is at the core of Dyck-CFL reachability and takes the

form Sum → 0 (∗ 1. Although this CFP seems simple, it enables

1115

Be�er Not Together: Staged Solving for Context-Free Language Reachability ISSTA ’24, September 16–20, 2024, Vienna, Austria

+ → �
∗
(58 + 58 | "?) �∗

" → 3 + 3

� → 0 "?

� → "? 0

(a) The original CFG.

L: + ′ → 58 + 58

" → 3 + 3

R: + → ("? 0)∗ (+ ′ | "?) (0 "?)∗

� → 0 "?

� → "? 0

(b) After rewriting %R .

L: + ′ → 58 ("? 0)∗ (+ ′ | "?) (0 "?)∗ 58

" → 3 ("? 0)∗ (+ ′ | "?) (0 "?)∗ 3

R: + → ("? 0)∗ (+ ′ | "?) (0 "?)∗

� → 0 "?

� → "? 0

(c) The decomposed CFG (after rewriting %L).

Figure 3: The context-free grammar (CFG) for alias analysis [38]. + or" is the start variable depending on the need of a client.

In (c), both productions of + ′ and" generate summary edges. When" is the start variable, R can be safely ignore.

staged solving for two signi�cant CFL instances: standard Dyck-

CFL-reachability [9] and extended Dyck-CFL-reachability [9, 24].

3.2.1 The Standard Dyck-CFL. Standard Dyck-CFL reachability has

been extensively studied [9, 13] and applied to a wide range of ap-

plications, including data dependence analysis [4] and uni�cation-

based alias analysis for Java [34, 36]. Dyck-CFL reachability restricts

the underlying CFL to a Dyck language, which generates properly

matched parentheses. A Dyck language is de�ned by the context-

free grammar (CFG) in Figure 1c.

Grammar Decomposition for Standard Dyck-CFL. Gram-

mar decomposition (see Section 3.1.2) can be performed as follows:

(1) Introduce the production Sum → L8 (M8 for Dyck CFP.

Consequently, we obtain two sets of productions in the

input CFG: %L = { Sum → L8 (M8 }, and %R = { (→

((| L8 (M8 | B | n }.
(2) Rewrite productions in %R :

(→ ((| L8 (M8 | B | n → ((| Sum | B | n → (Sum | B)∗

(3) Rewrite the production Sum → L8 (M8 in %L by replacing (

with sequence (Sum | B)∗. Thus, the dependency from Sum

to (is severed.

Sum → L8 (M8 → L8 (Sum | B)∗ M8
(4) Decompose CFG. Figure 1d shows L and R after decompo-

sition.

Staged Solving for Standard Dyck-CFL. As shown in Fig-

ure 1d, L-reachability is �rstly solved in PhaseL, which computes

summary edges (Sum-edges). Next, in PhaseR, R-reachability is

solved e�ciently by concatenating 0 or more Sum- and/or B-edges

to produce (-edges. That is, R-reachability operates on the input

graph with all (D<-edges generated in PhaseL.

3.2.2 The Extended Dyck-CFL. The extended Dyck-CFL [9] gen-

eralizes the standard Dyck-CFL to recognize partially matched

parentheses. This extension is desirable for modeling interprocedu-

ral �ow paths whose source and destination nodes are located in

distinct methods. In Figure 1b, the path 6
B
−→ 0

B
−→ 2

M8
−→ 3 is such an

example. Figure 2a de�nes the grammar for the extended Dyck-CFL.

It is worth pointing out that the extended Dyck-CFL reachability is

much more time-consuming compared to the standard Dyck-CFL

reachability [24].

Grammar Decomposition for Extended Dyck-CFL. Gram-

mar decomposition is performed as follows:

(1) Introduce the production Sum → L8 (M8 for Dyck CFP.

(2) Rewrite %R . Same as in Dyck-CFL, we reformulate the pro-

duction of (to (→ (Sum | B)∗. Next, the productions of

% and # are rewritten by replacing the nonterminal (with

the regular expression (Sum | B)∗, as follows:

% → (% | M8 % | n → ((| M8) % | n

→ ((| M8)
∗ → ((Sum | B)∗ | M8)

∗

→ (Sum | B | M8)
∗

→ (# | L8 # | n → ((| L8) # | n

→ ((| L8)
∗ → ((Sum | B)∗ | L8)

∗

→ (Sum | B | L8)
∗

Finally, we rewrite the production of Start by replacing the

nonterminals % and # with corresponding regular expres-

sions: Start → (Sum | B | M8)
∗ (Sum | B | L8)

∗.

(3) Rewrite %L . Same as in Dyck-CFL, this step results in the

production Sum → L8 (Sum | B)∗ M8 .
(4) Decompose CFG. Figure 2c shows the two decomposed gram-

mars L and R.

Staged Solving for Extended Dyck-CFL. For the extended

Dyck-CFL, L-reachability is computed in the same manner as in

the standard Dyck-CFL. However, its R grammar, depicted in Fig-

ure 2c, is more complex. It is noteworthy that the production for the

start variable (Start) contains only terminal symbols ((D< and B),

making the productions of % , # , and (unnecessary for computing

R-reachability. Although these productions are no longer needed

for solving R-reachability, they are still included for the sake of

completeness.

3.2.3 Solving L-Reachability for Dyck CFP. We employ the clas-

sic tabulation-based algorithm [19, 20] to solve L-Reachability

for Dyck CFP. Here we brie�y demonstrate the tabulation-based

algorithm using the example in Figure 1b, with the algorithm’s

details described in [20]. The algorithm deduces the summary edge

1
Sum
−−−→ 3 in the following three steps: (1) initialize a self-loop path

edge 0 d 0; (2) extend path edges by incorporating B- and Sum-

edges until we have 0 d 2 ; (3) match two parentheses represented

by edges 1
L8
−→ 0 and 2

M8
−→ 3 to obtain the summary edge. Note

that a self-loop path edge D d D is initialized only when there is

an incoming edgeF
L8
−→ D.

3.3 The Alias CFP

The Alias CFP is in the form of - → 0 �∗ . �∗ 1. This pat-

tern is widely used to model structure-transmitted data depen-

dence [18, 28, 38], which is crucial for the formulation of alias

analysis [11, 38] and points-to analysis [26, 28]. In Alias CFP, the

two terminals 0 and 1 emulate the structure-transmitted behaviors,

such as pointer reference and deference, as well as �eld writes and

1116

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenghang Shi, Haofeng Li, Jie Lu, and Lian Li

reads. Meanwhile, the expression �∗ . �∗ models alias relations.

Speci�cally, the nonterminal . signi�es the pointer source (e.g.,

heap objects allocated by new statements), and the Kleene closures

�∗ and �∗ represent the transitive �ow of the pointer source in

di�erent directions. Consequently, the sequence �∗ . �∗ connects

two aliased pointer variables.

The Alias CFP rests on the matching of 0 and 1. In the standard

algorithm [15], all sequences in the form of �∗ . �∗ are resolved

to derive - -edges. However, only those sequences that follow a

terminal 0 and precede a terminal 1 can derive- -edges, which typi-

cally represent only a small subset of such sequences. Furthermore,

deriving the sequence �∗ . �∗ easily introduce transitive redun-

dancy [11], which may greatly impact overall performance. There-

fore, our staged solving approach takes advantage of this pattern to

compute all - -edges from the smallest possible set of sequences of

the form �∗ . �∗, resulting in an optimized L-reachability solver

for this CFP (Algorithm 1). It should be noted that the derivation of

�-, . -, and �-edges generally depend on the resolution of - -edges,

which leads to mutual dependency.

Next, we �rst demonstrate how Alias CFP can be exploited to

enable staged solving for two popular client analyses: alias analysis

(Section 3.3.1) and points-to analysis (Section 3.3.2). We then pro-

pose an e�cient L-reachability solver for this CFP (Section 3.3.3).

3.3.1 Alias Analysis. Figure 3a gives the CFG, as formulated in [38],

for alias analysis of C programs. In Figure 3a, terminals 3 denotes

pointer deference, 58 indicates reference to the 8-th �eld, and 0

represents a direct assignment (i.e., a = b). The nonterminals + ,"

and � model value alias, memory alias and value �ow, respectively.

Alias analysis is conducted on a bidirected program expression

graph (PEG) [17, 36], where an - -edge D
-
−→ E corresponds to an

- -edge E
-
−→ D. Thus, we introduce three more terminals 3 , 58 , and

0 and a nonterminal�. Since both value alias (+) and memory alias

(") are symmetric, there is no need to introduce + and" .

Grammar Decomposition for Alias Analysis. Now, let us

examine how to solve CFL-based alias analysis in stages. The CFG

is decomposed by rewriting the two patterns 58 + 58 (in production

of +) and 3 + 3 (in production of"). Grammar decomposition is

performed as follows:

(1) Introduce productions for two Alias CFPs:

+ ′ → 58 + 58 (+
′ is a new nonterminal)

" → 3 + 3

(2) Rewrite %R :

+ → �
∗
(58 + 58 | "?) �∗ → �

∗
(+ ′ | "?) �∗

→ ("? 0)∗ (+ ′ | "?) (0 "?)∗

(3) Rewrite %L :

+ ′ → 58 + 58 → 58 ("? 0)∗ (+ ′ | "?) (0 "?)∗ 58

" → 3 + 3 → 3 ("? 0)∗ (+ ′ | "?) (0 "?)∗ 3

(4) Decompose grammar, see Figure 3c.

Stage Solving for Alias Analysis. L has two intricate and

mutually dependent productions for + ′ and " , respectively. To

resolve + ′- and "-edges, the standard algorithm needs to derive

all such sequences ("? 0)∗ (+ ′ | "?) (0 "?)∗. As discussed previ-

ously, this straightforward approach su�ers from a large number

of useless sequences since "/+ ′-edges can only be derived from

those sequences surrounded by a matched pair of terminals 3/58 (on

the left-hand side) and 3/58 (on the right-hand side), respectively.

An intuitive solution to avoid these unnecessary sequences is to

adapt the classic tabulation algorithm [20] for Alias CFP. However,

it su�ers from transitive redundancy [11]. Hence, in stage solving,

we develop a dedicated !-reachability solver for Alias CFP, detailed

in Algorithm 1 (Section 3.3.3), to tackle this problem.

For some clients, PhaseR can be skipped. For instance, points-to

analysis in [38] only concerns"-paths, making R unnecessary.

3.3.2 Points-To Analysis. Let us study a CFL that formulates points-

to analysis for Java [28]. The underlying CFG, reproduced from [28]

with some notational changes, is given in Figure 4a. In this CFG,

three terminals a, putf , and getf denote assignment, �eld write,

and �eld read, respectively. Production of FT in Figure 4a suggests

that an object can �ow to a variable via zero or many direct (a) or

indirect (putf Alias getf) assignments.

The nonterminal Alias is introduced for the alias relation. An

Alias path connects two aliased variables ?1 and ?2, when a heap

object $ �ows to both variables, i.e., $
FT
−−→ ?1 ∧ $

FT
−−→ ?2.

Inverse edges are introduced to connect ?1 and ?2 [17] via the CFL-

reachable path ?1
FT
−−→ $

FT
−−→ ?2. Interestingly, FT , as the inverse

relation of FT , denotes a points-to relation and serves as the start

variable of this CFG. To build FT -paths, we introduce four inverse

terminals: new, a, putf and getf .

Grammar Decomposition for Points-To Analysis. The con-

text free ingredients of this CFG re�ect on checking putf and getf
edges, which are the balanced parentheses for �eld-sensitivity. The

grammar is decomposed as follows:

(1) Introduce productions for A and A. Here we include A → 0

(A → 0) only for clarity of presentation.

A → a | putf Alias getf

A → a | getf Alias putf
(2) Rewrite %R :

FT → new (a | putf Alias getf)
∗ → new A∗

FT → (a | getf Alias putf)
∗ new → A

∗
new

Alias → FT FT → A
∗
new new A∗

(3) Rewrite %L :

A → a | putf Alias getf → a | putf A
∗
new new A∗ getf

A → a | getf Alias putf → a | getf A
∗
new new A∗ putf

(4) Decompose CFG. See Figure 4c.

Stage Solving for Points-To Analysis. Similar to the process

in Alias analysis, L-reachability is solved by Algorithm 1, which

optimizes transitive redundancy and computes only the necessary

sequences �
∗
=4F=4F�∗ that follow a putf (getf) and precede a

getf (putf) to derive A (A) relations. In solving R-reachability, since

FT is the start variable, irrelevant productions of FT and Alias can

be eliminated from R because FT does not depend on them. Thus,

grammar decomposition not only eliminates dependencies between

L and R (e.g., from A to Alias), but also within R itself (e.g., from

FT to Alias).

3.3.3 Solving L-Reachability for Alias CFP. We devise Algorithm 1

to e�ciently solve L-reachability for the Alias CFP, which consists

of productions in the form of - → 0 �∗ . �∗ 1. In a nut shell, the

1117

Be�er Not Together: Staged Solving for Context-Free Language Reachability ISSTA ’24, September 16–20, 2024, Vienna, Austria

FT → (a | getf Alias putf)
∗ new

FT → new (a | putf Alias getf)
∗

Alias → FT FT

(a) The original CFG.

L: A → a | putf Alias getf

A → a | getf Alias putf

R: FT → A
∗
new

FT → new A∗

Alias → A
∗
new new A∗

(b) After rewriting %R .

L: A → a | putf A
∗
new new A∗ getf

A → a | getf A
∗
new new A∗ putf

R: FT → A
∗
new

FT → new A∗

Alias → A
∗
new new A∗

(c) The decomposed CFG (after rewriting %L).

Figure 4: The context-free grammar (CFG) for Java’s points-to analysis [28]. The start variable FT denotes points-to relations

(the reverse version of FT). In (c), FT and Alias can be eliminated because FT does not depend on them.

Algorithm 1: Solving L-reachability based on the CFP

- → 0 �∗ . �∗ 1

1 Procedure SolveLReach():

2 initialize �-, . -, and �-edges;

3 add all . -edges to FWL;

4 while FWL ≠ ∅ or BWL ≠ ∅ do

5 while FWL ≠ ∅ do

6 pop D → E from FWL;

7 if there exists some 1-edge E
1
−→ F then

8 add E → D to BWL;

9 for each E
�
−→ F do

10 if D → F ∉ FEdges then

11 add D → F to FWL and FEdges;

12 while BWL ≠ ∅ do

13 pop D → E from BWL;

14 for each G
0
−→ E do

15 for each D
1
−→ ~ do

16 add G
-
−→ ~ to SumEdges;

17 for each E
�
−→ F do

18 if D → F ∉ BEdges then

19 add D → F to BWL and BEdges;

20 generate �-, . -, and �-edges based on new - -edges;

21 add all new . -edges to FWL;

22 for each new �-edge D
�
−→ E do

23 for eachF → D ∈ FEdges do

24 if F → E ∉ FEdges then

25 addF → E to FWL and FEdges;

26 for each new �-edge D
�
−→ E do

27 for eachF → D ∈ BEdges do

28 if F → E ∉ BEdges then

29 addF → E to BWL and BEdges;

algorithm extends a . -path through forward �-edges, and upon

encountering a 1-edge, it begins to traverse backward via �-edges

until it reaches an 0-edges. Thus, an - -edge is deduced.

Solving Algorithm. We classify the path edges (edge sequences)

being processed into two categories: forward path edges and back-

ward path edges. A forward path edge D d E represents a path

from D to E with the label sequence . �∗, and a backward path edge

E c D indicates the existence of a reverse path from E to D with

the label sequence �∗ . �∗ preceding a 1-edge D
1
−→ F .

In Algorithm 1, FWL (FEdges) and BWL (BEdges) denoteworklists

(edge sets) of forward and backward path edges, respectively. Lines

2-3 initialize �-, . -, and �-edges with all . -edges added to FWL.

In Lines 5-11, forward path edges are propagated along �-edges,

and a backward path edge is generated when a forward edge meets

a 1-edge (Lines 7 and 8). In Lines 12-19, we propagate backward

path edges via �-edges, and produce summary edges (- -edges) by

matching 0-edges with 1-edges. Due to mutual dependency, newly

introduced - -edges may generate new �-, . -, and �-edges (Line

20), which are handled by Lines 21, 22-25, and 26-29, respectively.

Example. We use a points-to analysis example to illustrate how

Algorithm 1 solves the production A → putf A
∗
new new A∗ getf .

In Figure 5b, �0 is abstracted from the code snippet of Figure 5a,

and �1 is transformed from �0 by applying the two productions

� → 0 and . → new new. For clarity, all inverse edges are omitted.

Figure 5c demonstrates the forward and backward propagation

using �2 and �3, with all path edges represented as dashed lines:

(1) Forward propagation (�2): The path edge 1 d 1 is popped from

FWL (Line 6), and propagated along 1
A
−→ 2 and 2

A
−→ 4 (once per

iteration), generating two forward path edges 1 d 2 and 1 d 4

(Lines 9-11). As stated in lines 7-8, a backward path edge 1 c 4 is

created, due to the existence of 4
getf
−−−→ 8 . (2) Backward propagation

(�3): In Lines 12-19, the backward path edge 1 c 4 produces 3 c 4 .

Subsequently, a summary edge ℎ
A
−→ 8 (represented as the curvy

line in �3) is resulted by matching ℎ
putf
−−−→ 3 with 4

getf
−−−→ 8 . (3)

Handling new edges: new edges may arise from the newly created

summary edge (Lines 22-29). Algorithm 1 terminates when new

edges can no longer be produced.

Discussion. Algorithm 1 is speci�cally designed for Alias CFP,

and it may require adjustments for new patterns. In our earlier im-

plementation, we failed to adapt the tabulation-based algorithm [20]

for this pattern due to poor performance caused by transitive redun-

dancy [11]. Algorithm 1 circumvents such redundancy by propagat-

ing . -reachability information along �-edges and �-edges. Regard-

ing precision, both algorithms compute the same set of summary

edges. Lastly, this optimization is also implemented in the baseline

algorithms for a fair comparison in our evaluation (Section 4).

1118

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenghang Shi, Haofeng Li, Jie Lu, and Lian Li

b = new O();//$1

c = b;

d = b;

e = c;

d.f = h;

i = e.f;

(a)

$1

b d h

c e i

�0

b d h

c e i

�1

new

a

a

a

putf

getf

A

A

A

putf

getf

.

(b)

b d h

c e i

�2

b d h

c e i

�3

A

A

A

putf

getf

.

A

A

A

putf

getf

.

A

(c)

Figure 5: An example of Java’s points-to analysis. (a) A code snippet. (b) �0 is the input graph translated from (a). �1 is

transformed from �0 via � → a and . → new new. (c) �2 and �3 show the forward and backward propagation (in dashed lines),

respectively. Finally, a summary edge ℎ
�
−→ 8 (the curvy line) is generated.

Algorithm 2: Solving R-reachability via ordered propaga-

tion

Input: Regular expression � = 41 · 42 ...4<
Output: Reachability results in '

1 Procedure SolveReg(41 · 42 ...4<):

2 for each node = ∈ + do

3 '>;3 (=) := {=};

4 for i from 1 to m do

5 if 48 = 0 then

6 for each node = ∈ + do

7 '(=) := ∅;

8 for each edge D
0
−→ E ∈ � do

9 '(E) := '(E) ∪ '>;3 (D);

10 else if 48 = 0∗ then

11 for each node = ∈ + do

12 '(=) := '>;3 (=);

13 for each edge D
0
−→ E ∈ �0 in topological order do

14 '(E) := '(E) ∪ '(D);

15 '>;3 = ';

3.4 Solving R-Reachability

Preprocessing. After grammar decomposition (Section 3.1.2), R is

a regular language with each nonterminal represented as a regular

expression over Σ ∪ #L , where Σ is the set of terminals in the

original CFG and #L is the set of nonterminals in L. Following

the rules in [3, 7], we further normalize the regular expression for

each nonterminal in R into the disjunctive normal form:

De�nition 2. (Disjunctive Normal Form). The disjunctive normal

form is of the form �1 |�2 |...|�= , where each �8 , for 8 = 1...=, is a

regular expression using only concatenation · and Kleene star ∗.

For each production ' → �1 |�2 |...|�= of R in disjunctive nor-

mal form, we solve each sub-production ' → �8 separately in

Algorithm 2, with the collective results constituting the �nal solu-

tion. Commonly, each �8 is a concatenation of either terminals (0),

or Kleene closures of a terminal (0∗), as observed in the four CFGs

we studied above. Hence, for clarity, we present Algorithm 2 for

this simple form of regular expressions, then discuss how general

regular expressions are addressed with a minor extension.

Solving Algorithm. Algorithm 2 solves the input expression

� = 41 · 42 ...4< by processing each sub-expression 48 sequentially,

from left to right. In the 8-th iteration of the algorithm, '(E) (resp.

'>;3 (E)) signi�es nodes reachable to E through a path with the

sequence 41 · ...48 (resp. 41 · ...48−1). Lines 5-9 address the scenario

where 48 = 0, which is self-explanatory. When dealing with 48 = 0∗

(Lines 10-14), we initially set '(=) to '>;3 (=) (considering 0∗ as

n). Subsequently, we propagate '(=) along 0-edges following the

topological order, which is obtained by building a subgraph �0

consisting of only 0-edges with strongly connected components

(SCCs) collapsed. This ordered propagation is facilitated by staged

solving, and is not applicable in the standard CFL-reachability al-

gorithm [5, 18] due to dynamically inserted edges.

Optimization. For 48 = 0∗, two optimizations are implemented:

(1) Except for the �rst loop iteration (41), we can skip the loop at

Lines 11-12 since the contents of ' and '>;3 are identical. (2) An

SCC is collapsed as a single node, with only one copy of ' retained

for all nodes within the SCC.

Extension. Algorithm 2 can be easily extended to handle com-

plex expressions, such as 48 = (01)∗ and 48 = (01∗)∗, by conceptu-

ally introducing new nonterminals for inner expressions of a Kleene

closure. For example, to handle 48 = (01∗)∗, we can introduce a

new nonterminal � for the sequence 01∗, thereby simplifying the

original expression to �∗.

4 Evaluation

We evaluate staged solving on two applications: context-sensitive

value-�ow analysis [31] and �eld-sensitive alias analysis [38]. Both

analyses are extensively evaluated in recent works [11, 12, 23, 33].

Value-�owAnalysis. The context-sensitive value-�ow analysis

is conducted on the sparse value-�ow graphs (SVFGs) [30, 31], using

the CFG of the extended Dyck-CFL as shown in Figure 2a. Previous

works [11, 23] have evaluated value-�ow analysis employing the

standard Dyck-CFL (Figure 1c), while we choose the extended Dyck-

CFL, which is more applicable but hard to scale [24].

Alias Analysis. The �eld-sensitive alias analysis for C++ is

conducted on the program expression graphs (PEGs) [38], using

the CFG presented in Figure 3a.

4.1 Experimental Setup

Environment. All the experiments were conducted on a server

with two 12-core 3.00GHz Intel(R) Xeon(R) Gold 5317 CPUs and

1 TB of physical memory. We conducted the experiments within

a time limit of 6 hours and a memory allocation of 512 GB. Each

1119

Be�er Not Together: Staged Solving for Context-Free Language Reachability ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: Results of context-sensitive value-�ow analysis. #Nodes and #Edges denote the numbers of nodes and edges in the

input graph, respectively. Time and Mem signify the time (in seconds) and memory (in gigabytes) consumption. “-” means that

an algorithm timeouts in 6 hours; “OoM” indicates that an algorithm runs out of memory (512GB). #SumEdge, #PathEdge, and

#TotalEdge denote summary edges, processed path edges in PhaseL, and total derived edges in two phases, respectively.

id #Nodes #Edges
Subcubic Stg Pocr Pocr

Stg
Pearl Pearl

Stg

#SumEdge #PathEdge #TotalEdge
Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem

cactus 544,480 1,007,989 - - 19.61 15.49 OoM OoM 555.38 201.42 - - 974.12 20.70 1,892,558 7,752,527 141,772,144,876

imagick 574,089 842,509 - - 13.43 14.93 OoM OoM 116.74 59.07 - - 76.75 18.62 353,018 2,209,455 44,436,103,006

leela 64,466 89,081 249.24 1.68 0.50 0.39 123.88 20.86 0.94 0.74 17.31 1.06 0.66 0.48 37,342 171,158 313,802,497

nab 55,652 72,366 80.16 0.70 0.55 0.26 164.40 38.67 20.20 7.95 13.70 0.71 0.98 0.37 139,343 499,097 82,655,045

omnetpp 664,358 1,857,831 - - 19.50 20.94 - - 49.78 34.28 5695.63 49.98 47.91 22.63 1,055,668 2,397,273 24,485,460,751

parest 299,718 407,343 63.84 3.32 2.45 1.81 33.98 6.34 2.58 2.09 13.03 4.33 2.58 2.12 15,514 113,865 63,953,921

perlbench 697,744 1,662,445 - - 28.24 26.46 OoM OoM 614.45 220.51 - - 494.03 36.63 404,195 11,780,236 234,707,705,380

povray 537,775 1,041,687 - - 21.63 13.90 OoM OoM 528.32 209.92 - - 321.28 19.13 2,839,417 10,664,021 136,347,654,971

x264 207,064 340,217 11576.80 24.74 3.36 3.64 7736.21 469.90 53.68 25.61 560.51 10.05 11.46 4.73 107,811 844,686 8,357,200,739

xz 49,395 62,955 57.65 0.70 0.30 0.22 36.91 7.93 0.48 0.40 4.39 0.59 0.34 0.28 8,594 45,784 66,835,873

Average 2405.54 6.23 10.96 9.8 1619.08 108.74 194.26 76.2 1050.76 11.12 193.01 12.57

Table 2: Results of �eld-sensitive alias analysis. The meaning of each column is the same as Table 1.

id #Nodes #Edges
Subcubic Stg Pocr Pocr

Stg
Pearl Pearl

Stg

#SumEdge #PathEdge #TotalEdge
Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem

cactus 93,557 212,478 664.61 2.76 156.83 2.55 353.32 17.99 147.92 18.87 149.87 1.28 71.72 2.68 15,865,822 265,900,612 831,928,173

imagick 119,314 301,846 2973.75 13.54 965.38 6.00 800.12 37.93 756.05 40.30 579.20 2.77 587.03 6.12 176,799,781 1,340,981,966 3,621,222,682

leela 22,186 49,748 13.74 0.20 2.08 0.24 2.96 0.36 1.68 0.50 2.48 0.12 1.32 0.25 589,865 5,697,894 28,249,442

nab 16,261 34,676 2.82 0.11 0.58 0.13 1.10 0.11 0.53 0.15 0.70 0.06 0.51 0.14 692,061 1,869,752 9,758,181

omnetpp 241,916 509,166 4868.77 9.17 1795.77 9.81 3834.51 215.07 3291.23 348.17 1296.51 5.21 938.54 10.12 56,930,084 929,126,781 2,568,491,006

parest 117,500 251,436 525.44 3.15 100.73 2.59 257.57 3.12 107.46 4.51 155.73 1.43 46.57 2.72 8,309,106 126,448,701 566,954,858

perlbench 139,183 348,916 18035.20 47.23 7937.61 11.29 6698.27 401.08 6721.77 406.59 3796.14 9.25 2549.65 11.08 106,395,782 5,892,471,865 12,305,454,819

povray 76,405 174,258 543.43 2.26 110.66 1.97 283.43 13.79 105.82 12.89 117.28 0.99 55.21 2.01 18,392,790 212,514,033 690,099,171

x264 60,956 136,352 39.77 0.58 10.65 1.02 13.39 0.84 8.59 1.40 9.98 0.46 8.26 1.07 6,052,306 20,590,293 84,099,124

xz 12,425 26,468 1.33 0.06 0.39 0.09 0.50 0.06 0.29 0.11 0.34 0.05 0.30 0.10 464,570 1,543,965 5,777,437

Average 2766.89 7.91 1108.07 3.57 1224.52 69.03 1114.13 83.35 610.82 2.16 425.91 3.63

experiment was run 5 times with the average runtime and memory

consumption reported.

Baselines. We have implemented our staged solver, Stg, and

compared it against the baseline solver, Subcubic, which imple-

ments Chaudhuri’s subcubic algorithm [5]. According to a previous

study [37], the subcubic algorithm is much more e�cient than

the standard cubic algorithm [15]. We further optimized Subcu-

bic using a grammar rewriting technique [11] to reduce transitive

redundancy. For instance, (→ ((| B | n can be rewritten as

(→ (B | n . Moreover, we evaluated Stg against two state-of-the-

art solvers, Pocr [11] and Pearl [23]. All solvers are implemented

on top of SVF [29] and LLVM [10], utilizing the sparse bit vector

data-structure from LLVM, which implements fast set operations.

Evaluation of Correctness. We have written a script to validate

that Stg and Subcubic compute the same set of edges.

Benchmarks. In alignment with previous works [11, 23], we

chose 10 SPEC C/C++ programs (listed in Table 1 and Table 2)

from the SPEC CPU 2017 benchmarks. We used SVF to extract both

SVFGs and PEGs.

Our evaluation aims to answer the following research questions:

• (RQ1). How does Stg compare to Subcubic?

• (RQ2). How does Stg compare to Pocr and Pearl?

• (RQ3). Can staged solving enhance the e�ciency of Pocr

and Pearl?

• (RQ4). Which phase dominates the time consumption of

Stg?

4.2 Comparison against Subcubic

Table 1 and Table 2 present the results of value-�ow analysis and

alias analysis, respectively. The meanings of each column are ex-

plained in the captions. Regarding time consumption, Stg is faster

than Subcubic in all evaluated benchmarks.

Performance Improvement. In value-�ow analysis, Stgcan

analyze 5 benchmarks (out of 10) that Subcubic cannot within

a 6-hour timeframe. For those 5 benchmarks that Subcubic fails

to analyze in 6 hours, Stg can complete its analysis in less than

30 seconds. For the remaining 5 benchmarks that both Stg and

Subcubic can analyze, Stg achieves an average speedup of 861.59x,

with the peek speedup reaching 3445.48x for the benchmark x264. In

alias analysis, the speedup achieved by Stg is more moderate, with

an average improvement of 4.1x. Concerning memory consumption,

compared to Subcubic, Stg achieves an average decrease of 3.76x

for value-�ow analysis and 1.37x for alias analysis, respectively.

Discussion. Now let us examine the performance improvements

in two parts: (1) the sparsity of the input graphs, and (2) the num-

ber of edges involved in PhaseL. As shown in Table 1 and Table 2,

both the input SVFGs and PEGs are extremely sparse, with the

ratios of #Edges to #Nodes being 2.26x and 1.74x on average, re-

spectively. Additionally, the number of edges processed in PhaseL
is signi�cantly lower far less than the number of total edges in each

evaluated benchmark. Speci�cally, in value-�ow analysis (Table 1),

summary edges (#SumEdge) and path edges (#PathEdge) in PhaseL
constitutes only 0.02% and 0.1% of the total edges (#TotalEdge) on

1120

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenghang Shi, Haofeng Li, Jie Lu, and Lian Li

average, respectively. As a result, we observe a drastic performance

improvement in value �ow analysis. Meanwhile, in alias analysis

(Table 2), summary edges and path edges in PhaseL account for

3.84% and 29.67%of the total edges, respectively. Therefore, a more

moderate speedup is obtained for alias analysis.

In both analyses, the number of edges involved in PhaseLis sig-

ni�cantly smaller compared to the total number of derived edges,

thus allowing PhaseL to be performed quickly. The time complexity

of PhaseR is $ (<=). We observe that, <, the combined count of

initial edges (#Edges) and summary edges (#SumEdge), is bounded

by$ (=) (with = = #Nodes). Hence, solving regular language reacha-

bility via ordered propagation (Algorithm 2) is highly e�cient. This

is the primary reason for the notable speedups achieved by Stg

over Subcubic. For instance, the moderate sized benchmark x264 re-

quires Subcubic more than 3 hours to analyze, demonstrating that

the extended Dyck-CFL-reachability is challenging to scale [24]. In

contrast, Stg completes its analysis in seconds.

We have also evaluated Algorithm 2 in solving R-reachability

against the algorithm in [35] (referred to as StdReg), which solves

a regular language reachability problem by reducing it to a tradi-

tional transitive closure. We have implemented StdReg together

with common optimization techniques such as SCC collapsing and

ordered propagation. In this comparison, Algorithm 2 demonstrates

average speedups of 1.42x and 2.17x over StdReg for value-�ow

analysis and alias analysis, respectively. Due to space limits, the

detailed data is not given here.

4.3 Comparison against Pocr and Pearl

In this subsection, we compare Stg against two state-of-the-art CFL-

reachability solvers, namely Pocr [11] and Pearl [23]. Pocr em-

ploys partially ordered solving for transitive relations, while Pearl

features a transitivity-aware multi-derivation approach. The origi-

nal implementations of the two solvers are based on the standard

cubic algorithm [15]. We further optimized their original implemen-

tations by incorporating the more e�cient subcubic algorithm [5].

This optimization achieves notable speedups: for instance, in alias

analysis, the optimized version of Pocr achieves an average speed

up of 2.63x compared to the original implementation. Columns 8-9

and 12-13 of Table 1 (Table 2) present the performance results for

Pocr and Pearl in value-�ow analysis (alias analysis), respectively.

Value-�ow Analysis. In value-�ow analysis, both Pocr (1.49x)

and Pearl (11.79x) demonstrate signi�cant performance improve-

ments over Subcubic. Note that the speedups will be consider-

ably higher if we disable grammar rewriting for transitive redun-

dancy optimization in Subcubic. However, when compared to Stg

(861.59x), the speedups achieved by Pocr and Pearl appear mini-

mal. Furthermore, within a 6-hour timeframe, Pocr and Pearl fail

to analyze 5 and 4 benchmarks, respectively. In contrast, Stg com-

pletes its analysis in just 30 seconds. Additionally, Pocr demands a

large amount of memory and exhausts available memory (512GB)

in 4 benchmarks. The large memory footprint of Pocr is due to

the high maintenance cost of the spanning tree model (consistent

with previous works [11, 12, 23]). On the other hand, Pearl is more

memory-e�cient.

Stg achieves drastic speedups over Pocr and Pearl. This is due

to the fact the in value-�ow analysis, PhaseL comprises a minimal

percentage of total edges (as detailed in Section 4.2). Hence, by

solving the majority edges using an e�ciently regular reachability

algorithm (Algorithm 2), Stg obtains substantial performance en-

hancements. On the other hand, Pocr and Pearl optimize on the

monolithic subcubic algorithm, resulting in only limited speedups.

Alias Analysis. Pocr and Pearl achieve average speedups of

2.63x and 4.35x over Subcubic, respectively, demonstrating compa-

rable performance to Stg (4.1x). This underscores the e�ectiveness

of Pocr and Pearl in optimizing out transitive redundancy, which

often cannot be addressed using grammar rewriting techniques [11].

More importantly, in alias analysis, the percentages of edges in-

volved in solving L-reachability is signi�cantly higher (29.67%)

than that in value �ow analysis (0.1%). Consequently, the speedups

achieved by Stg are more modest, with Stg only showing perfor-

mance similar to that of Pocr and Pearl.

4.4 Combination with Pocr and Pearl

In this experiment, we apply staged solving in conjunction with

Pocr and Pearl, resulting in Pocr
Stg and Pearl

Stg, respectively.

Both Pocr and Pearl target to optimize transitive redundancy, by

conceptually computing a closure of transitive relations. Hence,

Pocr
Stg and PearlStg addressL-reachability using Pocr and Pearl,

respectively, while they compute R-reachability using Algorithm 2,

which is shown to be much more e�cient in solving regular reach-

ability problems than Pocr and Pearl alone, according to our ex-

periments.

In Table 1 and Table 2, the performance metrics of PocrStg and

Pearl
Stg are detailed in columns 10-11 and 14-15, respectively.

Speci�cally, in alias analysis (Table 2), PocrStg achieves a 1.78x

speedup over Pocr, while PearlStg achieves a 1.7x speedup over

Pearl. The performance improvements are even more pronounced

in value-�ow analysis (Table 1).When compared to their non-staged

counterparts, both Pocr
Stg and Pearl

Stg demonstrate scalabil-

ity across all evaluated benchmarks, registering improvements of

74.82x and 37.66x, respectively.

When comparing PocrStg and Pearl
Stg to Stg, for value-�ow

analysis (Table 1), both Pocr
Stg and Pearl

Stg exhibit lower over-

all e�ciency than Stg alone, with an average slowdown of 14.3x

and 9.89x, respectively. This surprising result is because in value

�ow analysis, the overhead of computing transitive closures (to

facilitate transitive redundancy elimination) outweighs the bene�ts

of reduced redundancy, especially when L only accounts for an

insigni�cant percentage of total edges. For instance, in nab, the size

of the transitive closure is around 60 times larger than the number

of path edges. As a result, both Pocr
Stg and Pearl

Stg run slower

than Stg in value �ow analysis.

However, in alias analysis, where transitive redundancy is abun-

dant and transitive closure is relatively small compared to the num-

ber of path edges, PocrStg and Pearl
Stg outperform Stg, with

average speedups reaching 1.1x and 1.83x, respectively.

In conclusion, staged solving complements existing techniques

and signi�cantly enhances their e�ciency.

4.5 Time Distribution of Two Phases

As depicted in Figure 6, in value-�ow analysis, Stg’s temporal dis-

tribution allocates averagely 21.92% and 78.08% of the analysis time

1121

Be�er Not Together: Staged Solving for Context-Free Language Reachability ISSTA ’24, September 16–20, 2024, Vienna, Austria

cac
tus
ima

gic
k

lee
la nab

om
net

pp
par

est

per
lbe

nchpov
ray x26

4 xz
0 %

20%

40%

60%

80%

100%

VF:PhaseL VF:PhaseR

0 %

20%

40%

60%

80%

100%

AA:PhaseL AA:PhaseR

Figure 6: Percentages of time consumption in PhaseL and

PhaseR for value-�ow analysis (VF) and alias analysis (AA).

to PhaseL and PhaseR, respectively. In alias analysis, this distribu-

tion is essentially reversed, with PhaseL dominating Stg’s time

consumption at 81.09%.

We analyze the reason as follows: Grammar L in alias analysis

is more complex, featuring two intricate productions (represented

by nonterminals + ′ and" in Figure 3c) that mutually depend on

each other. Consequently, in alias analysis, PhaseL is notably time-

consuming, whereas in value-�ow analysis, PhaseL can be quickly

conducted and summary edges are easily resolved. This complexity

gap is also re�ected in the portion of edges derived in PhaseL,

with 0.1% and 29.67% for value-�ow analysis and alias analysis,

respectively. As a result, compared to value-�ow analysis, Stg

achieves a more modest performance enhancement over Subcubic

in alias analysis, since the time-consuming PhaseL undermines the

bene�ts from e�ciently solving R-reachability in PhaseR.

4.6 Discussion

Given a CFL-based analysis with the grammar CFG = (#, Σ, %, (),

staged solving is applicable if, by replacing each context-free ex-

pression 0 �2 1 in % by a symbol (′ (with 0, 1 ∈ Σ and �2 is a regular

expression over# ∪Σ), the original grammar CFG can be reduced to

a regular grammar over Σ∪ {(′}. As such, CFG can be decomposed

into L and R as detailed in Section 3.1.2. For all CFL-based analyses

we studied, staged solving is applicable.

Furthermore, staged solving is bene�cial if the decomposed gram-

mar L is smaller (in terms of deduced edges) than the original CFG.

In general, the smaller L is, the greater the performance improve-

ments can be achieved since the performance enhancements are

primarily attributed to the e�cient resolution of R-reachability

through Algorithm 2. This is con�rmed in in our evaluation: the

speedups achieved by Stg over Subcubic is signi�cantly higher

in value-�ow analysis (861.59x) compared to that in alias analysis

(4.1x). This improvement aligns with the reduced size of the gram-

mar L compared to the original CFG in value-�ow analysis (0.1%)

and in alias analysis (29.67%).

5 Related Work

This work focuses on optimizing CFL-reachability solving, a piv-

otal framework in program analysis with diverse applications [2,

17, 19, 20, 25–28, 36–38]. The (sub)cubic time complexity of CFL-

reachability has prompted the development of practical optimiza-

tion techniques. Previous works [37, 38] showed that the Four

Russian’s Trick can yield a subcubic algorithm by utilizing set op-

erations of fast sets. Graspan [33] adopts e�cient data processing

techniques from the Big Data community. Pocr [11] reduces tran-

sitive redundancy by determining a partial derivation order on the

�y. Pearl [23] features a multi-derivation approach to eliminate

repetitive derivations. In principle, all these techniques for CFL-

reachability are orthogonal to staged solving and can be employed

in PhaseL of staged solving to further improve the overall e�ciency.

Graph simpli�cation techniques [12–14, 21], shrinking the size of

the input graph, can also bene�t both phases of staged solving.

Bottom-up interprocedural analyses [6, 16], focusing on context-

sensitivity, share a common high-level concept with staged solving:

they both compute summaries �rst. The seminaive evaluation algo-

rithm for Datalog [1, 8] divides the solving process into independent

parts but does not address the mutual dependency problem. In the

literature, certain program analyses based on graph reachability op-

erate in multiple phases. However, to our knowledge, unlike staged

solving, none of these approaches serves as a technique for gen-

eral CFL-based program analyses. For example, in interprocedural

data-�ow analysis [17, 24] and slicing [20], researchers proposed a

hybrid approach: exhaustively compute function summary edges

�rst and answer queries on demand, while both phases of staged

solving are exhaustive. Additionally, the work in [37] introduces a

staged algorithm for alias analysis, leveraging specialized proper-

ties of the underlying graphs, and thus the proposed techniques do

not apply to other program analyses.

6 Conclusion

We propose staged solving, a novel approach to improve the scala-

bility of CFL-reachability analysis by addressing the context-free

and regular aspects of the underlying CFG in distinct stages. To the

best of our knowledge, staged solving is applicable to all CFL-based

analyses in the literature. We have developed an e�cient staged

CFL-reachability solver, Stg, and applied it to a wide range of CFL-

based analyses. Empirical results demonstrate that Stg can achieve

drastic speedups over Subcubic, averaging 861.59x for value-�ow

analysis and 4.1x for alias analysis, respectively. Furthermore, apply-

ing staged solving to two state-of-the-art solvers shows signi�cant

performance improvements, with 74.82x (1.78x) for Pocr and 37.66x

(1.7x) for Pearl in value-�ow (alias) analysis, respectively.

7 Data Availability

Our artifact is publicly available at [22].

Acknowledgments

We thank the reviewers for their valuable comments on this work.

This work is supported by the National Key R&D Program of China

(2022YFB3103900), the National Natural Science Foundation of

China (62132020, 62202452, and 62402474), and the China Post-

doctoral Science Foundation (2024M753295).

1122

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenghang Shi, Haofeng Li, Jie Lu, and Lian Li

References
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases.

Vol. 8. Addison-Wesley Reading.
[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, �ow, �eld, object-sensitive and lifecycle-aware
taint analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.
https://doi.org/10.1145/2666356.2594299

[3] Anne Brüggemann-Klein. 1993. Regular expressions into �nite automata. The-
oretical Computer Science 120, 2 (1993), 197–213. https://doi.org/10.1016/0304-
3975(93)90287-4

[4] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2017.
Optimal Dyck reachability for data-dependence and alias analysis. Proceedings of
the ACM on Programming Languages 2, POPL (2017), 1–30. https://doi.org/10.
1145/3158118

[5] Swarat Chaudhuri. 2008. Subcubic algorithms for recursive state machines. In
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. 159–169. https://doi.org/10.1145/1328438.1328460

[6] Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. 2015. Bottom-up context-
sensitive pointer analysis for Java. In Asian Symposium on Programming Lan-
guages and Systems. Springer, 465–484.

[7] John E Hopcroft and Je�rey D Ullman. 1969. Formal languages and their relation
to automata. Addison-Wesley Longman Publishing Co., Inc.

[8] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Sou�é: On synthesis of
program analyzers. In Computer Aided Veri�cation: 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28. Springer,
422–430. https://doi.org/10.1007/978-3-319-41540-6_23

[9] John Kodumal and Alex Aiken. 2004. The set constraint/CFL reachability
connection in practice. ACM Sigplan Notices 39, 6 (2004), 207–218. https:
//doi.org/10.1145/996893.996867

[10] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International symposium on code
generation and optimization, 2004. CGO 2004. IEEE, 75–86. https://doi.org/10.
1109/CGO.2004.1281665

[11] Yuxiang Lei, Yulei Sui, Shuo Ding, and Qirun Zhang. 2022. Taming transitive
redundancy for context-free language reachability. Proceedings of the ACM on
Programming Languages 6, OOPSLA2 (2022), 1556–1582. https://doi.org/10.1145/
3563343

[12] Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang. 2023. Recursive
State Machine Guided Graph Folding for Context-Free Language Reachabil-
ity. Proceedings of the ACM on Programming Languages 7, PLDI (2023), 318–342.
https://doi.org/10.1145/3591233

[13] Yuanbo Li, Qirun Zhang, and Thomas Reps. 2020. Fast graph simpli�cation for
interleaved Dyck-reachability. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. 780–793. https://doi.org/
10.1145/3385412.3386021

[14] Yuanbo Li, Qirun Zhang, and Thomas Reps. 2022. Fast Graph Simpli�cation for
Interleaved-Dyck Reachability. ACM Transactions on Programming Languages
and Systems (TOPLAS) 44, 2 (2022), 1–28. https://doi.org/10.1145/3492428

[15] David Melski and Thomas Reps. 2000. Interconvertibility of a class of set con-
straints and context-free-language reachability. Theoretical Computer Science 248,
1-2 (2000), 29–98. https://doi.org/10.1016/S0304-3975(00)00049-9

[16] ErikMNystrom, Hong-Seok Kim, andWen-MeiWHwu. 2004. Bottom-up and top-
down context-sensitive summary-based pointer analysis. In Static Analysis: 11th
International Symposium, SAS 2004, Verona, Italy, August 26-28, 2004. Proceedings
11. Springer, 165–180. https://doi.org/10.1007/978-3-540-27864-1_14

[17] Thomas Reps. 1998. Program analysis via graph reachability. Information and
software technology 40, 11-12 (1998), 701–726. https://doi.org/10.1016/S0950-
5849(98)00093-7

[18] Thomas Reps. 2000. Undecidability of context-sensitive data-dependence analysis.
ACM Transactions on Programming Languages and Systems (TOPLAS) 22, 1 (2000),
162–186. https://doi.org/10.1145/345099.345137

[19] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
data�ow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 49–61. https://doi.
org/10.1145/199448.199462

[20] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. 1994. Speeding
up slicing. ACM SIGSOFT Software Engineering Notes 19, 5 (1994), 11–20. https:
//doi.org/10.1145/193173.195287

[21] Atanas Rountev and Satish Chandra. 2000. O�-line variable substitution for
scaling points-to analysis. Acm Sigplan Notices 35, 5 (2000), 47–56. https:
//doi.org/10.1145/349299.349310

[22] Chenghang Shi, Haofeng Li, Jie Lu, and Lian Li. 2024. Artifact of “Better Not
Together: Staged Solving for Context-Free Language Reachability”. (2024). https:
//doi.org/10.6084/m9.�gshare.26156944.v4

[23] Chenghang Shi, Haofeng Li, Yulei Sui, Jie Lu, Lian Li, and Jingling Xue. 2023.
Two Birds with One Stone: Multi-Derivation for Fast Context-Free Language
Reachability Analysis. In 2023 38th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE). IEEE Computer Society, 624–636. https:
//doi.org/10.1109/ASE56229.2023.00118

[24] Qingkai Shi, Yongchao Wang, Peisen Yao, and Charles Zhang. 2022. Indexing
the extended Dyck-CFL reachability for context-sensitive program analysis. Pro-
ceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 1438–1468.
https://doi.org/10.1145/3563339

[25] Manu Sridharan. 2007. Re�nement-based program analysis tools. University of
California, Berkeley.

[26] Manu Sridharan and Rastislav Bodík. 2006. Re�nement-based context-sensitive
points-to analysis for Java. ACM SIGPLAN Notices 41, 6 (2006), 387–400. https:
//doi.org/10.1145/1133981.1134027

[27] Manu Sridharan, Stephen J Fink, and Rastislav Bodik. 2007. Thin slicing. In
Proceedings of the 28th ACM SIGPLAN conference on programming language design
and implementation. 112–122. https://doi.org/10.1145/1250734.1250748

[28] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-
driven points-to analysis for Java. ACM SIGPLAN Notices 40, 10 (2005), 59–76.
https://doi.org/10.1145/1094811.1094817

[29] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-�ow analysis in
LLVM. In Proceedings of the 25th international conference on compiler construction.
ACM, 265–266. https://doi.org/10.1145/2892208.2892235

[30] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using full-
sparse value-�ow analysis. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis. 254–264. https://doi.org/10.1145/2338965.2336784

[31] Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting memory leaks statically
with full-sparse value-�ow analysis. IEEE Transactions on Software Engineering
40, 2 (2014), 107–122. https://doi.org/10.1109/TSE.2014.2302311

[32] Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei.
2015. Summary-based context-sensitive data-dependence analysis in presence of
callbacks. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. 83–95. https://doi.org/10.1145/2676726.
2676997

[33] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani.
2017. Graspan: A single-machine disk-based graph system for interprocedural
static analyses of large-scale systems code. ACM SIGARCH Computer Architecture
News 45, 1 (2017), 389–404. https://doi.org/10.1145/3037697.3037744

[34] Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-
Reachability-Based Points-To Analysis Using Context-Sensitive Must-Not-Alias
Analysis. In ECOOP, Vol. 9. Springer, 98–122. https://doi.org/10.1007/978-3-642-
03013-0_6

[35] Mihalis Yannakakis. 1990. Graph-theoretic methods in database theory. In Pro-
ceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems. 230–242. https://doi.org/10.1145/298514.298576

[36] Qirun Zhang, Michael R Lyu, Hao Yuan, and Zhendong Su. 2013. Fast algorithms
for Dyck-CFL-reachability with applications to alias analysis. In Proceedings of
the 34th ACM SIGPLAN conference on Programming language design and imple-
mentation. 435–446. https://doi.org/10.1145/2491956.2462159

[37] Qirun Zhang, Xiao Xiao, Charles Zhang, Hao Yuan, and Zhendong Su. 2014.
E�cient subcubic alias analysis for C. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications.
829–845. https://doi.org/10.1145/2660193.2660213

[38] Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for C. In
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. 197–208. https://doi.org/10.1145/1328438.1328464

Received 2024-04-12; accepted 2024-07-03

1123

https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1016/0304-3975(93)90287-4
https://doi.org/10.1016/0304-3975(93)90287-4
https://doi.org/10.1145/3158118
https://doi.org/10.1145/3158118
https://doi.org/10.1145/1328438.1328460
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1145/996893.996867
https://doi.org/10.1145/996893.996867
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3563343
https://doi.org/10.1145/3563343
https://doi.org/10.1145/3591233
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3492428
https://doi.org/10.1016/S0304-3975(00)00049-9
https://doi.org/10.1007/978-3-540-27864-1_14
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1145/345099.345137
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/193173.195287
https://doi.org/10.1145/193173.195287
https://doi.org/10.1145/349299.349310
https://doi.org/10.1145/349299.349310
https://doi.org/10.6084/m9.figshare.26156944.v4
https://doi.org/10.6084/m9.figshare.26156944.v4
https://doi.org/10.1109/ASE56229.2023.00118
https://doi.org/10.1109/ASE56229.2023.00118
https://doi.org/10.1145/3563339
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1094811.1094817
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/2338965.2336784
https://doi.org/10.1109/TSE.2014.2302311
https://doi.org/10.1145/2676726.2676997
https://doi.org/10.1145/2676726.2676997
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1145/298514.298576
https://doi.org/10.1145/2491956.2462159
https://doi.org/10.1145/2660193.2660213
https://doi.org/10.1145/1328438.1328464

	Abstract
	1 Introduction
	2 Motivation
	2.1 CFL-Reachability
	2.2 Motivating Example
	2.3 Problem Statement

	3 Methodology
	3.1 CFP-Based Grammar Decomposition
	3.2 The Dyck CFP
	3.3 The Alias CFP
	3.4 Solving R-Reachability

	4 Evaluation
	4.1 Experimental Setup
	4.2 Comparison against Subcubic
	4.3 Comparison against Pocr and Pearl
	4.4 Combination with Pocr and Pearl
	4.5 Time Distribution of Two Phases
	4.6 Discussion

	5 Related Work
	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

