
Boosting the Performance of Multi-solver IFDS

Algorithms with Flow-Sensitivity Optimizations

Haofeng Li†, Jie Lu†, Haining Meng†‡, Liqing Cao†‡, Lian Li†‡§∗ and Lin Gao¶

† SKLP, Institute of Computing Technology, CAS, China
‡ University of Chinese Academy of Sciences, China

§ Zhongguancun Laboratory, China
¶ TianqiSoft Inc, China

† {lihaofeng, lujie, menghaining, caoliqing19s, lianli}@ict.ac.cn ¶ gaolin@tianqisoft.cn

Abstract—The IFDS (Inter-procedural, Finite, Distributive,
Subset) algorithms are popularly used to solve a wide range
of analysis problems. In particular, many interesting problems
are formulated as multi-solver IFDS problems which expect
multiple interleaved IFDS solvers to work together. For instance,
taint analysis requires two IFDS solvers, one forward solver
to propagate tainted data-flow facts, and one backward solver
to solve alias relations at the same time. For such problems,
large amount of additional data-flow facts need to be introduced
for flow-sensitivity. This often leads to poor performance and
scalability, as evident in our experiments and previous work. In
this paper, we propose a novel approach to reduce the number
of introduced additional data-flow facts while preserving flow-
sensitivity and soundness.

We have developed a new taint analysis tool, SADROID, and
evaluated it on 1,228 open-source Android APPs. Evaluation re-
sults show that SADROID significantly outperforms FLOWDROID

(the state-of-the-art multi-solver IFDS taint analysis tool) without
affecting precision and soundness: the run time performance is
sped up by up to 17.89X and memory usage is optimized by up
to 9X.

Index Terms—multi-solver IFDS, taint analysis, scalability

I. INTRODUCTION

The IFDS (Interprocedural, Finite, Distributive, Subset)

data-flow problem [1] is widely applied in solving a variety

range of analysis problems, such as taint analysis [2], [3],

[4], [5], bug detection[6], [7], [8], [9], pointer analysis [10],

[11], shape analysis [12], and slicing [13]. In IFDS, the set of

data-flow facts D is finite and the transferring functions (in

2D 7→ 2D) distribute over the meet operator ⊓. In practice,

IFDS problems are solved flow- and context-sensitively as a

special kind of graph-reachability problems (reachable along

inter-procedurally realizable paths) [14]. The algorithm has

worst-case time complexity of O(|E||D|3) and space com-

plexity of O(|E||D|2), where |E| and |D| are the program

size and the size of the data-flow facts domain, respectively.

Many analysis problems are formulated as multi-solver

IFDS problems. For instance, FLOWDROID [2] formulates

taint analysis as a multi-solver IFDS problem, where one IFDS

solver propagates tainted data-flow facts (represented as access

paths) forwardly, and another backward IFDS solver computes

alias relations on-demand. FLOWTWIST [15] employs two

IFDS solvers to address integrity and confidentiality issues

∗Corresponding author.

at the same time. In reality, alias-aware dataflow analyses

frequently utilize multiple interleaved IFDS solvers to simul-

taneously address dataflow equations and aliases. This strategy

ensures that aliases are computed precisely and efficiently.

In multi-solver IFDS algorithms, the interleaved IFDS

solvers need to be carefully coordinated to ensure flow-

sensitivity and context-sensitivity. Context and flow infor-

mation should be preserved when analysis is handed over

from one solver to another. For instance, in FLOWDROID,

the forward IFDS solver propagates tainted values forwardly

and whenever a tainted value is assigned to heap location

x.f (such as a field or an array), a backward IFDS solver is

spawned to search for aliases until it reaches a heap allocation

site. Context-sensitivity is enforced by injecting contexts to the

backward solver. When the backward IFDS solver finds an

aliased value y (via statement y = x), a new forward IFDS

solver is spawned to propagate the tainted value y.f from the

location where alias is introduced. For flow-sensitivity, data-

flow facts are extended with an active point (i.e., the starting

program point of the backward IFDS solver) and a value is

considered as tainted only after it reaches the active point.

When a backward analysis discovers an alias which is then

propagated forward, it becomes tainted only when it receives

a taint value. It is untainted at the point of alias creation and the

alias becomes tainted only at the point from where a backward

search for aliases started. Hence an alias is considered tainted

(i.e., ”is activated”) when it reaches an active point. Hence the

name active point.

The above extension ensures flow-sensitivity. However, it

also introduces a large number of data-flow facts. In our study,

the number of data-flow facts can increase up to 9.55X due

to active point extensions (the same data-flow fact can be

duplicated multiple times at distinct active points). As a result,

existing multi-solver IFDS algorithms often suffer from poor

performance and scalability. For example, previous study [16]

applied FLOWDROID [2] to a set of 2,950 Android apps on

a compute server with 730GB of RAM and 64 Intel Xeon

CPU cores, there are still 16 apps unanalyzable because the

IFDS solvers take more than 24 hours to finish and consume

all the memory for each app. Although recent optimization

techniques [3], [17], [18] can significantly improve run-time

performance and memory footprints, they still require large

979-8-3503-9509-9/24/$31.00 © 2024 IEEE 296

20
24

 IE
EE

/A
CM

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
Co

de
 G

en
er

at
io

n 
an

d 
O

pt
im

iza
tio

n 
(C

GO
) |

 9
79

-8
-3

50
3-

95
09

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
CG

O
57

63
0.

20
24

.1
04

44
88

4

Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



memory budgets (>200GB) and long analysis times (>3

hours) for many apps.

BOOMERANG [11] performs alias-aware taint analysis by

computing aliases (or aliased access paths) on demand – when

a tainted value is assigned to heap location x.f, it queries

all aliased access paths of x.f at the assignment statement

and propagates them thereafter. In contrast to FLOWDROID,

this approach propagates tainted alias values from the initial

point where values become tainted, rather than starting from

the program point where alias is introduced. Hence, no active

point is needed. However, this alternate approach does not

guarantee performance improvements because demand-driven

flow-sensitive alias analysis is inherently bidirectional [19] and

involves multiple iterations of backward and forward IFDS

solvers. In fact, BOOMERANG experiences slight slowdown

compared to FLOWDROID, as reported in the original paper

and confirmed by our experimental results.

This paper presents a new optimization technique which

boosts the performance of multi-solver IFDS algorithms. Our

approach is simple yet effective, as summarized below.

Observation: the introduction of active point to data-

flow facts (e.g., tainted values) can increase the number

of data-flow facts by up to 9.55X.

Solution: we apply flow-sensitivity optimization, which

optimizes performance and memory usages by ag-

gressively removing active points. Thus the number

of data-flow facts are significantly reduced. To en-

sure precision, we search for a realizable path flow-

sensitively when taint violation is discovered.

We have developed SADROID, a new taint analysis tool

with flow-sensitivity optimization. We evaluated SADROID

with a set of 1,228 open source apps. Experimental results

show that SADROID can outperform FLOWDROID by 17.89X,

and reduce memory footprint by 9X.

This paper makes the following contributions:

• We present a new optimization technique which boosts

the performance of multi-solver IFDS algorithms with

flow-sensitivity optimization. We unveil an overlooked

fact that the flow-sensitive extension in multi-solver IFDS

algorithms often introduces a large amount of data-flow

facts. Hence, we can achieve significant performance

speedups by removing those extensions and precision can

be achieved with an efficient post-mortem analysis.

• We implement SADROID, a new taint analysis tool with

flow-sensitivity optimizations. We make the tool publicly

available on FigShare 1.

• We evaluate SADROID on the set of 1,228 open source

apps from F-Droid [20]. Experimental results show that

SADROID significantly outperforms FLOWDROID: the

analysis time is reduced by up to 17.89X and the memory

usage is optimized by up to 9X.

1https://doi.org/10.6084/m9.figshare.24654132

The rest of the paper is organized as follows. Section II

overviews the classical multi-solver IFDS algorithm in FLOW-

DROID. Section III highlights how the flow-sensitive active

point extension increases the number of data-flow facts and

Section IV illustrates our flow-sensitivity optimization. We

evaluate the effectiveness and efficiency of our approach in

Section V. Section VI reviews related work and Section VII

concludes this paper.

II. BACKGROUND

We review the classical Tabulation IFDS algorithm [14] and

the multi-solver IFDS algorithm in FLOWDROID [2].

A. The IFDS Algorithm

As in [1], an IFDS instance IP is a five-tuple: IP =
(G∗, D, F,M,⊓), where G∗ = (N∗, E∗) is the inter-

procedural control flow graph (ICFG) of the program, D is a

finite set of data-flow facts, F ⊆ 2D 7→ 2D is a set of functions

that are distributive over the meet operator, M : E∗ 7→ F is a

map from edges in the ICFG to data-flow functions, and the

meet operator ⊓ is either set union or intersection.

The ICFG G∗ is built by collecting all the CFGs (control

flow graph), G0, G1, G2 ... in the program. By convention,

each CFG Gp consists of a unique entry node sp and a unique

exit node ep. A callsite is split into two nodes: a Call node and

a retSite node. At a callsite, inter-procedural call edges connect

the Call node to the entry node of its callee methods, and

return edges connect exit nodes of callee methods to the retSite

node. Thus, data-flow facts can propagate inter-procedurally

via call and return edges.

To solve IP context-sensitively as a graph reachablility

problem, G∗ is extended to an exploded super-graph G
#
IP =

(N#, E#) such that N# = N∗ × (D ∪ {0}) and E# =
{⟨m, d1⟩ → ⟨n, d2⟩ — m → n ∈ E∗, d2 ∈ f(d1)}. Note

that here 0 signifies an empty set of facts such that new data-

flow facts can be generated at a program point, and f ∈ F is

the flow function of the instruction at m. In the formulation,

flow function f is replaced with a graph representation of

M(m → n). Dataflow fact d holds at program point n if

there exists a realizable path ⟨smain, 0⟩ → ⟨n, d⟩ in G
#
IP. For

efficiency, G
#
IP is usually built on demand from G∗ during the

analysis.

B. The Multi-solver IFDS Algorithm

Algorithm1 reproduces the classical multi-solver IFDS algo-

rithm in FLOWDROID [2]. Similar algorithms are implemented

in other analyses with interleaved IFDS solvers [11], [10].

There are two IFDS solvers: the forward IFDS solver (lines 1

– 21) propagates tainted facts and the backward IFDS (lines

22 - 39) solver discovers aliases of tainted facts. Both types

of solvers implement the classical Tabulation algorithm which

accumulates sets of path edges and summary edges until a

fixed point. A path edge is in the form of ⟨sp, d1⟩ → ⟨n, d2⟩
(lines 3 and 25), where sp is entry statement of n’s procedure

p, n is the target statement, and d1 and d2 are data-flow facts.

297
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: The multi-solver IFDS algorithm in

FLOWDROID [2].

[1] Algorithm Main loop of forward solver():
[2] while WorkListFW ̸= ∅:
[3] pop ⟨sp, d1⟩ → ⟨n, d2⟩ off WorkListFW

[4] switch n:
[5] case n is call statement:
[6] if summary exists for call:
[7] apply summary
[8] else:
[9] map actual parameters to formal

parameters
[10] case n is exit statement:
[11] install summary ⟨sp, d1⟩ → ⟨n, d2⟩
[12] map formal parameters to actual

parameters
[13] map return value back to caller’s context
[14] case n is assignment lhs = rhs:
[15] d3 = replace rhs by lhs in d2
[16] if d3.activepoint is not null:

[17] d4 = d3
[18] else:
[19] d4 = duplicate d3
[20] d4.activepoint = n

[21] insert ⟨sp, d1⟩ → ⟨n, d4⟩ into
WorkListBW

[22] extend path-edges via the propagate-method of
the classical IFDS algorithm

[23] Algorithm Main loop of backward solver():
[24] while WorkListBW ̸= ∅:
[25] pop ⟨sp, d1⟩ → ⟨n, d2⟩ off WorkListBW

[26] switch n:
[27] case n is call statement:
[28] if summary exists for call:
[29] apply summary
[30] else:
[31] map actual parameters to formal

parameters
[32] extend path-edges via the

propagate-method of the classical IFDS
algorithm

[33] case n is method’s first statement:
[34] install summary ⟨sp, d1⟩ → ⟨n, d2⟩
[35] insert ⟨sp, d1⟩ → ⟨n, d2⟩ into

WorkListFW

[36] do not extend path-edges via the
propagate-method of the classical IFDS
algorithm, killing current taint d2

[37] case n is assignment lhs = rhs:
[38] d3 = replace lhs by rhs in d2
[39] insert ⟨sp, d1⟩ → ⟨n, d3⟩ into

WorkListFW

[40] extend path-edges via the
propagate-method of the classical IFDS
algorithm

It represents the suffix of a realizable path from ⟨smain, 0⟩ to

⟨n, d2⟩.

The forward solver processes each path edge ⟨sp, d1⟩ →
⟨n, d2⟩ in the worklist WorkListFW one by one. The algo-

rithm takes different actions at different types of program point

n: 1) n is a call statement. Function summary will be applied

if exists (lines 6 and 7). Otherwise, data-flow facts flow into

the callee function (lines 8 and 9) inter-procedurally; 2) n is a

Fig. 1. FLOWDROID — taint analysis as a multi-solver IFDS problem.

function exit. Function summary is constructed (line 11) and

data-flow facts flow to the caller function (lines 12 and 13);

3) n is an assignment to heap locations. Note that the data-

flow fact d2 is extended with a field activepoint for flow-

sensitivity. If d2.activepoint is null (line 18), suggesting that

d2 is already activated, the data-flow fact is deeply cloned into

a new data-flow fact d4 with active point n (line 19 and 20).

Then a new backward path edge is inserted in WorkListBW

to discover aliases (line 21).

Similarly, the backward solver processes path edges in

Work-ListBW . When it reaches the entry point of a method

(line 33) or an assignment, a function summary is constructed

and a forward path edge is introduced at the caller (line

35). When it reaches an assignment statement (line 37), a

forward path edge is introduced to propagate aliased taint

values forward. This way, backward analysis never returns

back to callers and context-sensitivity can be easily guaranteed

with injected context in the backward solver.

C. Flow-Sensitivity

Figure 1 depicts how flow-sensitivity is achieved when the

two IFDS solvers interacting with each other. Each node

represents a data-flow fact in the super-graph G
#
IP (i.e., a

tainted data-flow fact) at a program point and edges propagate

facts along the ICFG of the program. The meet operator ⊓ is

∪ since a fact is regarded as tainted at a joint point if it is

tainted in any of its incoming control-flow paths.

Data-flow facts are generated by assigning a tainted value to

another (e.g., line 6 generates data-flow fact b.f by assigning

the tainted value a to b.f), and killed by reset it to an

untainted value. Those transfer functions are encoded as edges

in G
#
IP. For instance, the transferring function at line 6 is

represented by the edge ⟨6•,a⟩ → ⟨6•,b.f⟩, where 6• and

6• denote the program points before and after the statement

at line 6, respectively.

In Figure 1, a is tainted by calling the sensitive method

source (line 2). At line 6, b.f is tainted by the assignment

statement b.f = a. In addition, b.f is deeply cloned into

a new data-flow fact b.f2 with active point line 6 (green

dot) and a new backward path edge is introduced to search

298
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



for aliases of b.f. The backward IFDS solver searches for

aliases until it reaches the heap allocation site at line 2 (b =

new B()). During the backward analysis, a new aliased value

c.f is discovered at line 4. As a result, ⟨sp,0⟩ → ⟨5•, c.f⟩ is

added into the WorkListFW to propagate the tainted value

c.f forwardly. The data-flow fact c.f is only activated when

the forward analysis reaches its active point (line 6). Thus, we

can report a taint violation at line 7 since the sensitive data

can reach the pre-defined sink function. Note that line 5 will

not trigger a taint violation since the data-flow fact is not yet

activated.

Demand-Driven Alias Analysis: BOOMERANG employs a

demand-driven analysis to query aliases at the program point

where tainted values are stored to heap. Take Figure 1 for

example. Variable a is tainted at line 2 and the tainted value is

propagated along the ICFG. When a is stored to heap location

b.f at line 6, a demand is raised to compute all aliases (aliased

access paths) of b.f at line 6, which returns the two access

paths b.f and c.f. Next, both b.f and c.f are propagated

along the ICFG from line 6, and the taint violation at line 7

is discovered.

Since BOOMERANG propagates tainted values from the

program point where values become tainted, active point is

no longer needed. However, due to the inherent complexity

of demand-driven flow-sensitive alias analysis, this approach

does not suggest performance improvements. PDFSA [19] has

systematically formulates demand-driven flow-sensitive alias

analysis as bidirectional analysis, which involves multiple

iterations of forward and backward dataflow analyses. For

instance, in Figure 1, to query all aliased access paths of

b.f at line 6, the demand-driven alias analysis firstly invokes

a backward IFDS solver to compute aliased values of b.

As a result, the aliased value c is discovered at line 4.

Next, a forward IFDS analysis is spawned to propagate alias

information along the ICFG. If the forward analysis encounters

a heap store instruction of c, say d.f = c, a new backward

IFDS solver will be invoked to compute aliased value of d,

and so on.

Implementation: FLOWDROID is implemented in SOOT

and uses Heros [21], a scalable, multi-threaded implementation

of the IFDS framework. The data-flow fact, i.e., tainted values,

are implemented by the Abstraction class which is a tuple

of two elements ⟨Access-Path, activationUnit⟩.
AccessPath represents tainted values as access paths, which

are abstracted with k-limiting (by default, k is set to 5), and

activationUnit is the active point which is the source

location indicating when a data-flow fact becomes active.

If a data-flow fact is active, field activationUnit

is null. When starting a backward analysis at program

point n, active data-flow facts are deeply cloned with

activationUnit set to n. Lines 16 - 20 in Algorithm1

highlights the process. In reality, a data-flow fact is often

cloned multiple times (up to hundreds of times) at different

active points, resulting in a large number of data-flow facts.

TABLE I
2,053 APPS GROUPED BY MEMORY USAGES OF FLOWDROID.

Categories <8G 8G-32G >32G Total

Connectivity 67 0 8 75

Development 34 0 2 36

Games 57 1 4 62

Graphics 15 0 4 19

Internet 218 6 63 287

Money 31 2 11 44

Multimedia 124 3 37 164

Navigation 67 2 14 83

Phone & SMS 36 0 10 46

Reading 61 0 17 78

Science &Education 66 2 10 78

Security 68 0 9 77

Sports & Health 29 1 8 38

System 157 7 24 188

Theming 30 1 3 34

Time 63 4 11 78

Writing 49 1 11 61

Total 987 22 219 1,228

III. MOTIVATION

To understand the performance impacts of active points,

we conduct an extensive study by running the latest version

of FLOWDROID [22] (a6e25d) on the set of all 2,053 apps

downloaded from F-Droid [20], an open source Android app

repository. We use the default configuration of FLOWDROID

(e.g., access path is limited by 5 and out-of-memory warning

is issued when memory usage reaches 90% of the given

budget). All experiments in this paper are conducted on an

Intel Core (TM) i5-10210U (1.6GHz) notebook with 40GB
RAM, running on Ubuntu 20.04.1. The maximum heap size

of JVM is set to 32GB (with -Xmx).

Table I summarizes the memory usages of FLOWDROID in

analyzing the set of 2,053 apps in 17 different categories [20]

(Column 1). For each app, it maybe belong to several cate-

gories. Following previous work[3], [17], for each app, we

run FLOWDROID 5 times and report the average memory

usage. Columns 2 to 4 show the number of apps grouped by

FLOWDROID’s memory usages and Column 5 gives the total

number of analyzed apps in each group.

There are 825 apps not processed by FLOWDROID since

they either cannot be handled by SOOT or do not contain

any sources or sinks. Among the other 1,228 apps, 987 apps

can be analyzed within 8GB of memory (Column 2), 22 apps

require a memory footprint from 8GB to 32GB (Column 3),

and 219 apps cannot be analyzed by FLOWDROID given a

memory budget of 32GB (Column 4). If FLOWDROID runs

out of memory for more than 3 times in analyzing an app,

we regard the app as not analyzable by FLOWDROID within

32GB memory budget (i.e., >32GB).

We further investigate the 22 apps with memory footprints

from 8GB to 32GB. Table II (Rows 2-23) presents the results.

For clarity, we give each app an abbreviated name (Column

3). The sizes of those apk files (Column 5) range from 348

KB (CAT) to 23MB (CRG), and the memory requirements for

analyzing those apps (Column 4) range from 8.352MB (OZT)

to 24.212MB (DWAL).

299
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
STATISTICS OF FLOWDROID IN ANALYZING 22 APPS. ABBR IS THE ABBREVIATED NAME FOR EACH APP, MEM IS THE MEMORY USAGE REPORTED BY

FLOWDROID, #NF AND #NAP ARE THE NUMBER OF DATA-FLOW FACTS AND THE NUMBER OF ACCESS PATHS, RESPECTIVELY.

App Version Abbr Mem (MB) Size # NF # NAP NF / NAP Time (s)

bus.chio.wishmaster 1.0.2 BCW 21,317 3.6M 224,716 34,410 6.53 1,105

ch.hgdev.toposuite 1.2.0 CHT 17,073 2.2M 73,470 10,072 7.29 340

com.alfray.timeriffic 1.09.05 CAT 22,694 348K 180,677 37,479 4.82 782

com.stripe1.xmouse 2.0.27 CSX 11,686 3.5M 128,903 51,573 2.50 318

com.fastebro.androidrgbtool 1.4.4 CFA 15,216 1.8M 174,597 61,257 2.85 978

com.github.quarck.calnotify 5.0.5 CGQC 23,100 2.8M 238,846 75,021 3.06 646

com.liato.bankdroid 1.9.10.6 CLB 11,386 4.1M 651,809 129,943 5.02 300

community.fairphone.launcher 2.0 CFL 8,722 16.0M 189,751 33,174 5.72 153

com.rareventure.gps2 1.1.48 CRG 11,461 23.0M 238,421 77,963 3.06 303

de.k3b.android.locationMapViewer 0.3.5.170911 DKAL 9,385 1.3M 267,154 69,669 3.83 258

de.wikilab.android.ldapsync 2.1.4 DWAL 24,212 1.6M 43,199 11,094 3.89 1,481

eu.pretix.pretixscan.droid 1.2.1 EPPD 10,197 14.0M 301,885 135,778 2.22 140

eu.quelltext.mundraub v1.230 EQM 12,002 3.0M 70,600 16,644 4.24 533

F-Droid 1.1 FD 16,587 7.4M 443,674 108,404 4.11 656

io.mrarm.irc 0.5.2 IMI 22,482 2.5M 671,410 259,589 2.59 1,732

jwtc.android.chess 8.9.5 JAC 9,032 3.2M 318,144 67,356 4.72 213

net.eneiluj.moneybuster 0.0.15 NEM 13,807 9.0M 73,330 72,834 1.01 448

org.fdroid.fdroid 1.8-alpha0 OFF 14,218 7.6M 292,929 89,209 3.28 606

org.secuso.privacyfriendlyweather 2.1.1 OSP 21,634 4.9M 948,023 108,566 8.73 765

org.secuso.privacyfriendlytodolist 2.2 OSP2 11,466 2.3M 161,547 16,921 9.55 260

org.zephyrsoft.trackworktime 1.0.5 OZT 8,352 2.1M 79,415 32,436 2.45 266

ru.equestriadev.mgke 3.1 Release REM 15,623 2.4M 132,449 46,879 2.83 430

Impacts of Active Points: To study the impacts of active

points, we compare the number of data-flow facts with that

number when active points are removed. Specifically, when

the multi-solver IFDS analysis reaches a fix point, we count

the number of all data-flow facts and the number of all distinct

access paths. Columns 6-8 in Table II show the comparison

results. The number of data-flow facts (# NF, Column 6)

is significantly greater than the number of access paths (#

NAP, Column7), up to 9.55X for OSP2. There is only slight

difference for the benchmark NEM, because aliases are rare in

this app.

As discussed in Section II-C, data-flow facts are copied into

new facts at active points when starting backward analysis.

Figure 2 studies the distribution of number of data-flow fact

copies. Except for NEM, the average number of copies ranges

from 1.22 (EPPD) to 8.55 (OSP2).

Table III shows the maximum number of copies for each

app. A data-flow fact can be duplicated for at most 156

times (CHT). It may sound surprising why a data-flow fact

can be duplicated so many times. Take the data-flow fact

r1.outputStream in BCW, for example. The class of r1

(Output) has two fields outputStream and buffer (a

byte array), outputStream write buffer to the target file.

There are 17 methods in class Output with statements storing

data into buffer, resulting a large number of active points

and data-flow fact copies. In addition, the class Output is

extended by its child class KryoOutputHC which introduces

new methods and statements storing data into buffer.

Fig. 2. The number of data-flow fact copies for the 22 apps in Table II.

Active points, introduced for flow-sensitivity, can have

significant impacts to run time performance and mem-

ory usages. The number of data-flow facts are inceased

by up to 9.55X.

IV. FLOW-SENSITIVITY OPTIMIZATION

Figure 3 overviews SADROID, a new taint analysis tool with

flow-sensitivity optimization. SADROID extends the original

multi-solver IFDS algorithm with two new modules (high-

300
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
THE MAXIMUM NUMBER OF DATA-FLOW FACT COPIES FOR THE 22 APPS IN TABLE II. # MAX IS MAXIMUM NUMBER.

App BCW CHT CAT CSX CFA CGQC CLB CFL CRG DKAL DWAL

# MAX 115 156 24 21 13 34 98 45 33 43 26

App EPPD EQM FD IMI JAC NEM OFF OSP OSP2 OZT REM

# MAX 14 33 24 123 54 7 18 28 36 33 28

Fig. 3. SADROID: taint analysis with flow-sensitivity optimization.

lighted in gray box): the Optimization Module simplifies

data-flow fact by disregarding active points (i.e., the field

activationUnit is always null). This aggressive opti-

mization can largely improve run time performance with a

much smaller number of data-flow facts. However, it will also

introduce false positives. Hence, flow-sensitive path builder

will search for a bug-triggering path flow-sensitively when a

taint violation is identified. The reported results are guaranteed

to be precise.

In practice, the extra overhead introduced by flow-sensitive

path builder is negligible. Firstly, the existing path search

algorithm of FLOWDROID can be extended efficiently to report

a bug-triggering path flow-sensitively. Moreover, there are

typically only a small number of taint reports in an app and

path builder is not frequently invoked.

A. Optimization Module

Algorithm 2: IFDS solver without active point

Algorithm Main loop of forward solver():
while WorkListFW ̸= ∅:

[3] pop ⟨sp, d1⟩ → ⟨n, d2⟩ off WorkListFW

[4] switch n:
· · ·

[14] case n is assignment lhs = rhs:
[15] d3 = replace rhs by lhs in d2
[19] insert ⟨sp, d1⟩ → ⟨n, d3⟩

into WorkListBW

· · ·

The Optimization Module simplifies data-flow facts by

disregarding active points. The field activationUnit is

simply set to null, suggesting all data-flow facts are active. As

a result, data-flow facts only contain access paths.

Algorithm 2 illustrates how to apply this optimization to

the original multi-solver IFDS algorithm (Algorithm 1). In the

original algorithm, when a tainted value is assigned to heap

(lines 16-20 in Algorithm 1), copies of active data-flow facts

are introduced with new active point information. With flow-

sensitivity optimization, we do not check active points and do

not duplicate data-flow facts. The propagated data-flow facts

can then be directly handed over to the backward solver for

alias discovery (lines 14 -19 in Algorithm 2).

Figure 4 gives an example demonstrating the effectiveness

of this optimization. Variable a is tainted at line 2 and passed

as an actual parameter to the callee functions of the call

statement at line 3. The call statements b.foo may invoke

multiple targets, e.g., B1.foo, B2.foo, ..., Bn.foo. All

target methods assign the tainted formal parameter p to field

this.f (line 8). As a result, multiple data-flow fact copies

are introduced. Next, the backward analysis will search for

aliases of those data-flow fact copies. When the backward

analysis leaves the callee targets, each data-flow fact copy will

generate a new data-flow fact b.f since their active points are

distinct. With flow-sensitivity optimization, all copies of b.f

are merged into one data-flow fact. As such, the number of

data-flow facts can be substantially reduced.

B. Flow-Sensitive Path Builder

The Flow-sensitive Path builder guarantees flow-sensitivity

and precision by searching for a taint propagation path in

a flow- and context-sensitive manner. Given a taint report

⟨source, sink⟩, FLOWDROID reports a propagation path via a

backward depth-first traversal from sink to source. Beginning

from the fact d at sink, FLOWDROID traverses all predecessors

of d until it reaches source, where predecessors are those facts

creating d according to data-flow functions (lines 17 - 25).

For context-sensitivity, a stack S is introduced to record

the call stack during the depth-first traversal. The stack S is

updated in a standard fashion: callsites are pushed and popped

at retSite nodes (lines 13 - 14) and Call nodes (lines 15 - 16),

respectively. When visiting a Call node, its callsite needs to

match with the top of stack S to guarantee context-sensitivity.

The procedure PathBuilderForFact is extended in

Algorithm 3 for flow-sensitivity. Since spurious data flow

facts can only originate when switching from a forward IFDS

301
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Flow-sensitivity optimization can reduce a large number of duplicated data-flow facts.

Algorithm 3: Flow-sensitive path builder

[1] Let p be ⟨np, dp⟩, where np and dp are program point
and data-flow fact for node p, respectively

[2] Procedure PathBuilder(source, sink):
[3] path, S := {}
[4] PathBuilderForFact(sink, path, S)
[5] return path

[6] Procedure PathBuilderForFact(d, path, S):
[7] if d is already visited :
[8] return FALSE
[9] if d is source :
[10] return TRUE
[11] else:
[12] append d into path
[13] if nd is retSite node at call statement cs :
[14] push cs to S
[15] elif nd is Call node at call statement cs :
[16] pop cs from S
[17] for predecessor p of d :
[18] if np is Call node at call statement cs :
[19] if cs does not match with S.top :
[20] continue
[21] elif np is the fork point of backward solver :
[22] if ¬ Valid(p) :
[23] continue
[24] if PathBuilderForFact(p, path, S) :
[25] return TRUE
[26] remove d from path
[27] if nd is retSite node at call statement cs :
[28] pop cs from S
[29] elif nd is Call node at call statement cs :
[30] push cs to S
[31] return FALSE

[32] Procedure Valid(p):
[33] Let a taint point be a statement generating dsink

[34] Let a kill point be a statement killing dsink

[35] Backward traverse the ICFG from nsink

[36] if nsink reaches np before a kill point :
[37] return TRUE
[38] elif nsink reaches a taint point before a kill point and

nsink can reach np :
[39] return TRUE
[40] else:
[41] return FALSE

solver to a backward solver, we validate each program point p

where a backward solver is spawned (line 22). The validation

guarantees that the dataflow fact dsink holds at nsink when

continuing the forward analysis from np. There are two such

cases. In the first case (lines 36 and 37): dsink can flow to

nsink along a path from np to nsink. Note that in this case

dsink already holds at np by construction. In the second case

(lines 38 and 39), dsink is generated along a path from np to

nsink. In either case, dsink is guaranteed to hold at nsink.

Theorem 1. Algorithm 3 guarantees precision and soundness.

Proof. Precision: By construction, the dataflow fact dsink
holds at a spawning point np since p is a predecessor of sink

in the taint propagation path. The validation function Valid

further guarantees that dsink can be propagated to nsink from

np. Thus, no spurious taint propagation path is generated.

Soundness: Let p be a spawning point on a taint propagation

path reported by FLOWDROID, the dataflow fact dsink must

reaches np first then propagated to nsink (i.e., activated by the

active point). This condition satisfies the Valid procedure

and such a path will be identified by Algorithm 3.

Let us examine the example in Figure 1. After removing

active points, there is a taint propagation path ⟨2, a⟩ →
⟨6, b.f⟩ → ⟨4, c.f⟩ → ⟨5, c.f⟩ where ⟨6, b.f⟩ spawns a

backward solver. However, the node ⟨6, b.f⟩ is invalid since

line 6 cannot reach the sink point (line 5) along the ICFG

of the program. Hence, it is an invalid propagation path and

we will not report a taint warning at line 5. There is another

tainted propagation path in the example ⟨2, a⟩ → ⟨6, b.f⟩ →
⟨4, c.f⟩ → ⟨7, c.f⟩. In this path, the spawning point ⟨6, b.f⟩
is valid since the dataflow fact c.f.g can reach the sink point

(line 7) from line 6 without being killed. As a result, we will

correctly report the taint warning at line 7.

Figure 5 further illustrates how the flow-sensitive path

builder invalidates spurious taint propagation paths. The spu-

rious taint propagation path ⟨2, a⟩ → ⟨6, b.g⟩ → ⟨3, c.f.g⟩ →
⟨5, c.f.g⟩ will be invalidated since the fact c.f.g cannot reach

line 5 from line 6 where a backward solver is spawned.

Although there is a reachable path from line 6 to line 5, the

dataflow fact c.f.g is killed by the assignment at line 7.

C. Implementation

We implement SADROID by applying the two extensions

(Algorithm 2 and Algorithm 3) to FLOWDROID. FLOW-

DROID implements several active points-guided optimizations,

as listed below:

302
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. An example of invalid propagation paths.

1. Inactive facts cannot taint arguments of native call in

forward IFDS solver.

2. Inactive facts cannot taint primitive variable in forward

IFDS solver.

3. If inactive fact exactly matches with the right hand side

value of an assignment, the left hand side value will not be

tainted.

4. When backward IFDS solver processes call edge, inactive

facts with active points in the target method of this function

call will not be propagated to the target method.

5. When forward IFDS solver processes return edge, inactive

facts with active points in current method will not be

propagated to the caller method.

The above optimizations are no longer applicable to

SADROID. As a result. SADROID will taint more values than

FLOWDROID. To address this problem, we further extended

path builder as follows:

• For tainted arguments of native calls, we require that all

its ancestor nodes can reach the native call without their

data-flow facts being killed.

• Exactly matched taint values (with primitive vairables be-

ing a special case) are getField nodes, and we require

that one of its ancestor node is a matched putField

node which can reach the getField node without its

data-flow fact being killed.

As such, those tainted values are guaranteed to be active for

the first three optimization scenarios.

Note that Optimization 4 and 5 are not sound. The intuition

behind the two optimizations is that the active points of those

data-flow facts are unlikely to be visited again. Hence, those

inactive data-flow facts are discarded. However, in practice,

the leaving method may be invoked in a loop or recursive

function, and these inactive data-flow facts could be activated

later.

V. EVALUATION

To demonstrate the effectiveness of our approach, we com-

pare SADROID against FLOWDROID in solving taint analysis

Fig. 6. Run times and memory usages of SADROID for the 25 apps in group
3. The left vertical axis is run time (s) and the right vertical axis is memory
usage (MB).

problems. The extensions adopted in SADROID will not

impact precision and both tools will produce the same results

unless the unsound optimizations in FLOWDROID take effect.

We further verified the correctness of SADROID with exten-

sive benchmarking. For DroidBench [23], both FLOWDROID

and SADROID report consistent information leaks. Hence,

hereafter, we focus on evaluating the performance difference

between the two tools.

FLOWDROID and its proposed taint analysis are not exclu-

sively designed for running on big servers. They are commonly

used as development and testing tools within normal develop-

ment environments. So, all our experiments are conducted on

an Intel Core(TM) i5-10210U laptop (1.6GHz) with 40GB of

RAM, running Unbuntu 20.04.01 with JDK 8. For JVM, we set

the maximum heap size to 32GB (with -Xmx). We evaluate

each tool using the set of 1,228 apps from F-Droid. Both

FLOWDROID and SADROID are implemented based on SOOT,

a multi-threaded solver. And both tools exhibit instability with

every run. So, for each app, we run both tools 5 times each

and report their average run times and memory usages. An app

is regarded as unanalyzable by a tool if the tool runs out of

memory for more than 3 times. Both tools use the same default

configuration file of FLOWDROID to specify taint sources and

taint sinks.

Among the 1,228 apps, 194 apps cannot be analyzed by both

SADROID and FLOWDROID and those benchmarks will not be

discussed further. The remaining 1,034 apps are categorized

into 3 groups according to their memory usages of FLOW-

DROID: group1 consists of 987 apps requiring less than 8GB
of RAM, group2 consists of 22 apps with memory usages

from 8GB to 32GB, and group3 is a set of 25 apps that can

only be analyzed by SADROID within 32GB of RAM. Our

evaluation answers the following research questions:

RQ1. Is SADROID faster than FLOWDROID?

RQ2. Does SADROID consume less memory compared to

FLOWDROID?

RQ3. Is flow-sensitive path builder efficient?

A. RQ1. Speedups

Columns 5-7 in Table IV compare the run time of FLOW-

DROID and SADROID in analyzing the 22 apps in group2.

303
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
PERFORMANCE COMPARISONS BETWEEN FLOWDROID AND SADROID. SAD IS SADROID AND FD IS FLOWDROID.#PE IS THE NUMBER OF PATH

EDGES, INCLUDING BOTH FORWARD AND BACKWARD EDGES. # FPB IS THE RUNNING TIME OF FLOW-SENSITIVE PATH BUILDER.

APP
Memory (MB) Time (s) # PE

# FPB (s)
FD SAD SAD / FD FD SAD FD / SAD FD SAD FD / SAD

BCW 21,317 8,871 0.42 1,105 402 2.75 108,679,799 32,540,210 3.34 0.027

CHT 17,073 1,959 0.11 340 19 17.89 72,991,633 4,540,563 16.08 0.012

CAT 22,694 10,245 0.45 782 385 2.03 75,027,983 38,492,671 1.95 0.006

CSX 11,686 11,686 1.00 318 317 1.01 55,425,042 52,310,922 1.06 0.003

CFA 15,216 6,902 0.45 978 158 6.19 45,248,010 10,300,510 4.39 0.010

CGQC 23,100 5,096 0.22 646 150 4.31 114,094,376 26,991,123 4.23 0.052

CLB 11,386 7,094 0.62 300 135 2.22 42,311,595 18,445,617 2.29 0.139

CFL 8,722 2,140 0.25 153 34 4.50 35,328,914 6,482,034 5.45 0.022

CRG 11,461 7,406 0.65 303 130 2.33 33,521,164 16,081,406 2.08 0.009

DKAL 9,385 7,490 0.80 258 74 3.49 49,700,488 15,745,260 3.16 0.007

DWAL 24,212 4,210 0.17 1,481 199 7.44 100,363,660 15,519,292 6.47 0.046

EPPD 10,197 7,544 0.74 140 93 1.51 17,918,040 11,885,048 1.51 0.007

EQM 12,002 11,346 0.94 533 298 1.79 34,565,465 20,140,346 1.72 0.008

FD 16,587 7,085 0.43 656 198 3.31 58,878,170 17,121,861 3.44 0.122

IMI 22,482 9,268 0.41 1,732 828 2.09 88,483,598 44,902,046 1.97 0.002

JAC 9,032 7,454 0.83 213 120 1.78 54,249,091 34,319,652 1.58 0.023

NEM 13,807 OOM - 448 - - 50,035,391 - - -

OFF 14,218 9,329 0.66 606 193 3.14 53,051,358 15,123,902 3.51 0.122

OSP 21,634 5,814 0.27 765 66 11.59 112,793,448 10,278,503 10.97 0.014

OSP2 11,466 3,853 0.34 260 21 12.38 47,875,686 3,227,889 14.83 0.009

OZT 8,352 4,794 0.57 266 192 1.39 12,526,845 8,462,125 1.48 0.005

REM 15,623 11,406 0.73 430 190 2.26 71,363,571 32,816,220 2.17 0.004

AVG 15,135 7,190 0.48 584 200 2.92 61,161,806 20,748,914 2.95 0.031

Except for the two benchmarks NEM and CSX, SADROID sig-

nificantly outperforms FLOWDROID, with the largest speedup

of 17.89X (CHT). The average speed up is 2.92X. For CSX, the

performance difference between SADROID and FLOWDROID

is negligible. SADROID runs out of memory on NEM while

FLOWDROID can successfully analyze this benchmark. The

reason is that the unsound optimizations in FLOWDROID

aggressively remove a large number of data-flow facts in

analyzing this benchmark.

Columns 8-10 show the number of data-flow facts computed

in FLOWDROID and SADROID. Except for CSX and NEM,

SADROID can greatly reduce the number of data-flow facts

(by averagely 2.95X), resulting in large performance improve-

ments. The number of reduced data-flow facts is small for CSX

(1.06X), hence the speedup is only 1.01x.

For the 25 apps (to save space, we omit details of these

benchmarks) in group 3, FLOWDROID can not analyze them

given a memory budget of 32GB while SADROID can analyze

each app in 20 minutes with the same memory budget.

Figure 6 shows the analysis times of SADROID. The average

analysis time is 424 seconds and it takes only 13 seconds for

SADROID to analyze the benchmark CNT.

Finally, for the 987 apps in group 1, both SADROID and

FLOWDROID can analyze them quickly and the performance

differences between the two tools are small. For the apps in

group1, SADROID takes 9.20 seconds averagely which is less

than 14.77 seconds spent by FLOWDROID.

Comparison with Boomerang: We have also compared

SADROID against BOOMERANG [24], which extends FLOW-

DROID with a demand-driven alias analysis. Surprisingly,

BOOMERANG cannot run to finish on all benchmarks in

group2 and group3. The reason is that BOOMERANG has not

been actively maintained and it is not integrated into the latest

version of FLOWDROID. Without recent optimizations, earlier

versions of FLOWDROID and BOOMERANG cannot scale to

large apps in group2 and group3. Hence, we compare the same

version of FLOWDROID with BOOMERANG using the first 100

benchmarks in group 1 where benchmarks are sorted by their

names alphabetically. BOOMERANG experiences a noticeable

slowdown, the average analysis time slows down by 40%. This

results are also consistent with the experiments in their orig-

inal paper [24]. To summarize, demand-driven alias analysis

guarantees flow-sensitivity without introducing active points.

However, it does not lead to performance improvements.

B. RQ2. Memory Optimization

Columns 2-4 in Table IV and Figure 7 compare the memory

usages between FLOWDROID and SADROID for the 22 apps

in group2. In this comparison, we use the memory usages re-

ported by FLOWDROID: after analyzing an app, FLOWDROID

will report its memory usage, which is the difference between

the amount of total memory and that of the currently available

memory.

As shown in Figure 7, there are 17 apps with significant

memory usage reduction, from 26% (OFF) to 89% (CHT). For

CHT, we effectively optimize the memory usage by 9X (usage

of FLOWDROID divided by usage of SADROID). However, the

memory usage improvements are small for the 4 benchmarks

CSX, DKAL, EQM, JAC, with a memory usage reduction of

304
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. Memory usage differences between FLOWDROID and SADROID

for 21 apps which can be analyzed by both of FLOWDROID and SADROID

between 8 and 32GB of memory.

less than 20%. For the 4 benchmarks, we only reduce a small

number data-flow facts (Columns 2-4 in Table IV).

Finally, Figure 6 shows the memory usages for the 25 apps

in group3. Those apps cannot be analyzed by FLOWDROID

given a memory budget of 32GB. SADROID can analyze

those apps with an average memory consumption of 12GB.

DTEX has the largest memory usage of 23GB, and CNT

and DTEX have the smallest memory usages of 2.24GB and

2.39GB, respectively.

C. RQ3. Efficiency of Flow-Sensitive Path Builder

We remove spurious reports introduced by flow-sensitivity

optimizations in SADROID by constructing a flow-sensitive

propagation path. In practice, the number of taint violations is

small and the length of propagation path is not long. Hence,

flow-sensitive path builder is very efficient: the overhead is

negligible compared to the large amount of data-flow facts

optimized.

The last column in Table IV gives the run time of flow-

sensitive path builder for the 22 apps in group2. It takes at

most 0.139 seconds (CLB) to search for flow-sensitive path,

and the time is less than 0.1 seconds for all other benchmarks.

Discussion and Limitation: SADROID boosts the perfor-

mance of multi-solver IFDS algorithm. Compared to FLOW-

DROID, the performance speedup can be up to 17.89X and

memory usage can be optimized by 9X (only 11% of the

original memory consumption). Overall, the averagely perfor-

mance speedup is 2.92X and memory usage is optimized by

2.08X on average. However, SADROID does not guarantee

performance improvements. It runs out of memory on one

benchmark NEM which can be analyzed by FLOWDROID. This

outliner is due to the unsound optimizations in FLOWDROID

(Section IV-C). To verify it, we run FLOWDROID on NEM with

those unsound optimizations disabled, and FLOWDROID also

runs out of memory.

Although the flow-sensitivity optimization achieves signif-

icant performance improvements, there are still 194 apps

cannot be analyzed with 32GB of memory. Other optimization

techniques, such as sparsification [3], [18] can be combined

with our optimization, to further improve performances.

VI. RELATED WORK

IFDS: The IFDS/IDE analysis framework defines a spe-

cial data-flow analysis and has been applied in a wide range

of different applications, including software testing, security

analysis, and program verification. Reps et al. [1] initially

presented an IFDS analysis framework to solve the inter-

procedural, finite, distribute, subset problem. The framework

is then generalized in [25] to solve the more general inter-

procedural distribute environment problem (IDE), where the

data-flow facts are represented by an environment (i.e., a

mapping from symbolic to values). Naeem et al. [14] made

a few practical extensions to the original algorithm, which is

now adopted in popular analysis and compilation frameworks

including WALA [26], SOOT [27], and LLVM [28].

Many optimization techniques have been applied to the

IFDS algorithm. WALA [26] provides a memory-efficient

bit-vector-based solution, Bodden et al. [29] implemented a

multi-threaded IFDS/IDE solver in SOOT, and Schubert et

al. [30] developed an extendable IFDS/IDE solver for C/C++

programs in LLVM. There are a number of research on

performance improvement optimizations for IFDS. Dongjie et

al. [3] proposed an effective optimization to the IFDS/IDE

solver by propagating data-flow facts sparsely, which can

drastically improve performance and memory consumption.

Arzt et al. [31] pre-computed summaries for library functions,

which are applied to improve scalability. Haofeng et al. [17]

scaled up IFDS algorithm by removing path edges which may

not be accessed anymore and swapping in-memory data to

disk when memory usages reaching a pre-defined threshold.

Arzt et al. [18] improve the performance of IFDS by removing

path edges that are unlikely to be visited in the future.

Multi-solver IFDS: Many analysis problems are formu-

lated as a multi-solver IFDS problems. FLOWDROID [2] (a

state-of-the-art multi-IFDS-based taint analysis tool) formu-

lates taint-analysis as a multi-solver IFDS problem: a forward

IFDS solver to propagate tainted variables, and a backward

IFDS solver to discover aliases. This way, it is context-,

flow-, and field-sensitive. Flowtwist [15] employs two IFDS

solvers to compute integrity and confidentiality violations at

the same time. PDFSA [19] nicely formalizes demand-driven

alias problem as bidirectional dataflow problems, suggesting

the necessity of multi-solver IFDS for alias-aware data-flow

problems.

Data-Flow Facts: Access-paths are effective in track

aliases and are widely used to compute alias-aware data flow

problems [2], [10]. For performance and scalability, access-

paths are often abstracted with k-limiting. Deutsch et al. [32]

used regular expressions to symbolically represent an access

path, which is effective for recursive data structures (access

path a.f.f.f.f.f can be simplified as a.f5. Khedker et

al. [33] proposed access graphs which can represent infinite

lengths of recursive field accesses. Johannes et al. [34] ex-

tended the regular expression representation of access path

with a set of exclusions for excluded fields. This access-path

abstraction can reduce overall number of data-flow facts and

305
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



improve summary reuse in IFDS.

In this paper, we present a new optimization techniques

for multi-solver IFDS problems. Our optimization reduces the

number of data-flow facts by firstly sacrificing flow-sensitivity

during the IFDS analysis, then restoring flow-sensitivity by

refining the results.

Taint Analysis Tools: Taint analysis aims to detect infor-

mation flow violations and is implemented in many commer-

cial and open-source security vetting tools. Among the many

taint analysis tools for Android [35], [36], [37], [38], [4], [2],

FLOWDROID remains to be the state-of-the-art taint analysis

tool [39]. This paper introduces a new tool, SADROID, which

extends FLOWDROID with flow-sensitivity optimizations to

significantly improve performance while preserving precision.

VII. CONCLUSION

In this paper, we propose a simple yet effective optimization

technique for multi-solver IFDS algorithms. The optimization

is based on the observation that a large number of data-flow

facts are duplicated for flow-sensitivity. Hence, our optimiza-

tion avoids such duplication by sacrificing flow-sensitivity

during the multi-solver IFDS analysis and employs a post-

mortem analysis to regain flow-sensitivity.

ACKNOWLEDGMENT

We thank all anonymous reviewers for their valuable feed-

back. This work is supported by the National Key R&D

Program of China (2022YFB3103900), the National Natural

Science Foundation of China (NSFC) under grant number

62132020 and 62202452.

REFERENCES

[1] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the 22nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, ser. POPL ’95. New York, NY, USA: Association
for Computing Machinery, 1995, p. 49–61. [Online]. Available:
https://doi.org/10.1145/199448.199462

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
259–269. [Online]. Available: https://doi.org/10.1145/2594291.2594299

[3] D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu,
L. Li, and J. Xue, “Performance-boosting sparsification of the ifds
algorithm with applications to taint analysis,” in Proceedings of the

34th IEEE/ACM International Conference on Automated Software

Engineering, ser. ASE ’19. IEEE Press, 2019, p. 267–279. [Online].
Available: https://doi.org/10.1109/ASE.2019.00034

[4] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” in Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 1329–1341.
[Online]. Available: https://doi.org/10.1145/2660267.2660357

[5] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman,
“Taj: Effective taint analysis of web applications,” SIGPLAN Not.,
vol. 44, no. 6, p. 87–97, Jun. 2009. [Online]. Available: https:
//doi.org/10.1145/1543135.1542486

[6] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang, “Pse:
explaining program failures via postmortem static analysis,” in Pro-

ceedings of the 12th ACM SIGSOFT twelfth international symposium

on Foundations of software engineering, 2004, pp. 63–72.

[7] S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system and language
for building system-specific, static analyses,” in Proceedings of the

ACM SIGPLAN 2002 Conference on Programming language design and

implementation, 2002, pp. 69–82.
[8] G. Wassermann and Z. Su, “Static detection of cross-site scripting

vulnerabilities,” in 2008 ACM/IEEE 30th International Conference on

Software Engineering. IEEE, 2008, pp. 171–180.
[9] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding

and detecting evolution-induced compatibility issues in android apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering, ser. ASE 2018. New York, NY,
USA: Association for Computing Machinery, 2018, p. 167–177.
[Online]. Available: https://doi.org/10.1145/3238147.3238185

[10] J. Späth, K. Ali, and E. Bodden, “Ideal: Efficient and precise alias-aware
dataflow analysis,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
Oct. 2017. [Online]. Available: https://doi.org/10.1145/3133923

[11] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden, “Boomerang:
Demand-driven flow-and context-sensitive pointer analysis for java,” in
30th European Conference on Object-Oriented Programming (ECOOP

2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
[12] A. Gotsman, J. Berdine, and B. Cook, “Interprocedural shape analy-

sis with separated heap abstractions,” in International Static Analysis

Symposium. Springer, 2006, pp. 240–260.
[13] T. Tan, Y. Li, Y. Zhang, and J. Xue, “Program Tailoring: Slicing by

Sequential Criteria (Artifact),” Dagstuhl Artifacts Series, vol. 2, no. 1,
pp. 8:1–8:3, 2016. [Online]. Available: http://drops.dagstuhl.de/opus/
volltexte/2016/6129

[14] N. A. Naeem, O. Lhoták, and J. Rodriguez, “Practical extensions to
the ifds algorithm,” in Compiler Construction, R. Gupta, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 124–144.

[15] J. Lerch, B. Hermann, E. Bodden, and M. Mezini, “Flowtwist: effi-
cient context-sensitive inside-out taint analysis for large codebases,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, 2014, pp. 98–108.
[16] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,

and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th International Conference on Software Engi-

neering - Volume 1, ser. ICSE ’15. IEEE Press, 2015, p. 426–436.
[17] H. Li, H. Meng, H. Zheng, L. Cao, J. Lu, L. Li, and L. Gao,

“Scaling up the ifds algorithm with efficient disk-assisted computing,”
in 2021 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). IEEE, 2021, pp. 236–247.
[18] S. Arzt, “Sustainable solving: Reducing the memory footprint of

ifds-based data flow analyses using intelligent garbage collection,”
in 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE). Los Alamitos, CA, USA: IEEE Computer
Society, may 2021, pp. 1098–1110. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00102

[19] S. Jaiswal, U. P. Khedker, and S. Chakraborty, “Bidirectionality in
flow-sensitive demand-driven analysis,” Sci. Comput. Program., vol.
190, no. C, may 2020. [Online]. Available: https://doi.org/10.1016/j.
scico.2020.102391

[20] F-droid. https://f-droid.org/. Accessed: 2019.12.
[21] E. Bodden, “Inter-procedural data-flow analysis with ifds/ide and soot,”

in Proceedings of the ACM SIGPLAN International Workshop on State

of the Art in Java Program analysis, 2012, pp. 3–8.
[22] Flowdroid-github. https://github.com/secure-software-engineering/

FlowDroid. Accessed: 2019.
[23] Droidbench 2.0. https://github.com/secure-software-engineering/

DroidBench. Accessed: 2017.05.
[24] J. Späth, L. N. Q. Do, K. Ali, and E. Bodden, “Boomerang:

Demand-Driven Flow- and Context-Sensitive Pointer Analysis for Java
(Artifact),” Dagstuhl Artifacts Series, vol. 2, no. 1, pp. 12:1–12:2, 2016.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2016/6133

[25] M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow
analysis with applications to constant propagation,” Theoretical Com-

puter Science, vol. 167, no. 1, pp. 131 – 170, 1996. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0304397596000722

[26] IBM. Wala: T.j. watson libraries for analysis. http://wala.sourceforge.net.
Accessed: 2020.

[27] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The Soot framework
for Java program analysis: a retrospective,” in Cetus Users and

Compiler Infrastructure Workshop (CETUS 2011), Oct. 2011. [Online].
Available: http://www.bodden.de/pubs/lblh11soot.pdf

306
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 



[28] Llvm framework. https://llvm.org/. Accessed: 2020.
[29] E. Bodden, “Inter-procedural data-flow analysis with ifds/ide and soot,”

in Proceedings of the ACM SIGPLAN International Workshop on State

of the Art in Java Program Analysis, ser. SOAP ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 3–8. [Online].
Available: https://doi.org/10.1145/2259051.2259052

[30] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-
procedural static analysis framework for c/c++,” in Tools and Algorithms

for the Construction and Analysis of Systems, T. Vojnar and L. Zhang,
Eds. Cham: Springer International Publishing, 2019, pp. 393–410.

[31] S. Arzt and E. Bodden, “Stubdroid: automatic inference of precise data-
flow summaries for the android framework,” in 2016 IEEE/ACM 38th

International Conference on Software Engineering (ICSE). IEEE, 2016,
pp. 725–735.

[32] A. Deutsch, “Interprocedural may-alias analysis for pointers: Beyond
k-limiting,” ACM Sigplan Notices, vol. 29, no. 6, pp. 230–241, 1994.

[33] U. P. Khedker, A. Sanyal, and A. Karkare, “Heap reference analysis
using access graphs,” ACM Transactions on Programming Languages

and Systems (TOPLAS), vol. 30, no. 1, pp. 1–es, 2007.
[34] J. Lerch, J. Späth, E. Bodden, and M. Mezini, “Access-path abstraction:

Scaling field-sensitive data-flow analysis with unbounded access
paths,” in IEEE/ACM International Conference on Automated Software

Engineering (ASE 2015), Nov. 2015, pp. 619–629. [Online]. Available:
https://www.bodden.de/pubs/lsb+15access-path.pdf

[35] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard, “Information flow analysis of android applications in droidsafe.”
in NDSS, vol. 15, no. 201, 2015, p. 110.

[36] H. Cai and J. Jenkins, “Leveraging historical versions of android apps
for efficient and precise taint analysis,” in Proceedings of the 15th

International Conference on Mining Software Repositories, 2018, pp.
265–269.

[37] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in 2015 IEEE/ACM 37th

IEEE International Conference on Software Engineering, vol. 1, 2015,
pp. 280–291.

[38] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN

International Workshop on the State of the Art in Java Program Analysis,
2014, pp. 1–6.

[39] F. Pauck, E. Bodden, and H. Wehrheim, “Do android taint analysis
tools keep their promises?” in Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, 2018, pp. 331–341.

307
Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 17,2025 at 05:38:46 UTC from IEEE Xplore.  Restrictions apply. 


