
1144 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

Generic Sensitivity: Generics-Guided Context
Sensitivity for Pointer Analysis

Haofeng Li , Tian Tan, Yue Li, Jie Lu , Haining Meng, Liqing Cao, Yongheng Huang, Lian Li , Lin Gao,
Peng Di, Liang Lin, and ChenXi Cui

Abstract—Generic programming has found widespread appli-
cation in object-oriented languages like Java. However, existing
context-sensitive pointer analyses fail to leverage the benefits
of generic programming. This paper introduces generic sensi-
tivity, a new context customization scheme targeting generics.
We design our context customization scheme in such a way
that generic instantiation sites, i.e., locations instantiating generic
classes/methods with concrete types, are always preserved as
key context elements. This is realized by augmenting contexts
with a type variable lookup map, which is efficiently generated
in a context-sensitive manner throughout the analysis process.
We have implemented various variants of generic-sensitive anal-
ysis in WALA and conducted extensive experiments to compare
it with state-of-the-art approaches, including both traditional
and selective context-sensitivity methods. The evaluation results
demonstrate that generic sensitivity effectively enhances existing
context-sensitivity approaches, striking a new balance between
efficiency and precision. For instance, it enables a 1-object-
sensitive analysis to achieve overall better precision compared
to a 2-object-sensitive analysis, with an average speedup of 12.6
times (up to 62 times).

Index Terms—Pointer analysis, generic programming, context
sensitivity.

I. INTRODUCTION

POINTER analysis statically computes the possible run time
values (abstract memory locations) of pointer variables in

a program, and it provides a foundation for a variety of applica-
tions, such as bug detection [1], [2], [3], compiler optimization
[4], security analysis [5], [6], [7], [8], etc. The effectiveness

Manuscript received 15 July 2023; revised 1 March 2024; accepted 8 March
2024. Date of publication 12 April 2024; date of current version 16 May
2024. This work was supported in part by the National Key R&D Program
of China under Grant 2022YFB3103900, in part by the National Natural
Science Foundation of China (NSFC) under Grant 62132020, in part by the
Alibaba Group through the Alibaba Innovative Research Program, and in part
by the CCF-Ant Group Research Foundation. Recommended for acceptance
by M. Pradel. (Corresponding authors: Haofeng Li; Lian Li.)

Haofeng Li and Jie Lu are with SKLP, Institute of Computing Tech-
nology, Chinese Academy of Sciences, Beijing 100049, China (e-mail:
lihaofeng@ict.ac.cn).

Tian Tan and Yue Li are with the State Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing 210093, China.

Haining Meng, Liqing Cao, and Yongheng Huang are with SKLP, Institute
of Computing Technology, Chinese Academy of Sciences, Beijing 100049,
China, and also with the University of Chinese Academy of Sciences, Beijing
101408, China.

Lian Li is with SKLP, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100049, China, also with Zhongguancun
Laboratory, China, and also with the University of Chinese Academy of
Sciences, Beijing 101408, China (e-mail: lianli@ict.ac.cn).

Lin Gao is with TianqiSoft, Inc., Beijing 100142, China.
Peng Di is with Ant Group, Hangzhou 310013, China.
Liang Lin and ChenXi Cui are with Alibaba Group, Beijing 100012, China.
Digital Object Identifier 10.1109/TSE.2024.3377645

and precision of those client applications directly depend on
the precision of the underlying pointer analysis results.

There is a rich literature optimizing the efficiency and pre-
cision of pointer analysis [9], [10], [11], [12], [13], and one of
the key mechanism to improve precision is context-sensitivity
[14], [15], [16], [17], [18], [19]. Context-sensitive pointer anal-
yses differ values of a pointer variable under different calling
contexts, effectively reducing spurious results introduced by
infeasible inter-procedural control flow paths and drastically
improving precision. In general, a context is represented by
a sequence of k context elements, where context elements
can be call-sites (k-call-site-sensitivity), allocation sites of re-
ceiver objects (k-object-sensitivity), types of receiver objects or
types that contain the methods which allocate receiver objects
(two strategies of k-type-sensitivity defined by Smaragdakis
et al. [18]). For object-oriented programs, object-sensitivity
is believed to be better than call-site-sensitivity in achieving
precision and efficiency [14], [15], and type-sensitivity is re-
garded as a more efficient, but less precise alternative to object-
sensitivity [18].

Under k-limiting, the most recent k context-elements are
picked to represent a context. For instance, k-object-sensitive
pointer analysis analyzes a method m with its context
[Ok, ..., O1], where O1 is a receiver object of m and Oi+1 is
an allocator of Oi, i.e., a receiver object of a method allocating
Oi. In practice, k is often limited to 1 or 2 in analyzing large
real-world applications [20], [21].

This paper, for the first time, proposes a new context cus-
tomization scheme for generics. Generic programming allows
to write generic algorithms for different data representations
using type variables, and has been widely adopted and used
in modern programming languages including C++, Java, C#,
etc. For instance, the previous study [22] over a large corpus
of open-source projects demonstrated that generics, since its
introduction to Java in 2004, is one of the most frequently used
features in Java. With generics, we can define classes or meth-
ods with type variables as parameters, and later instantiate those
classes or methods by giving them specific actual types. And
type variables can also serve as type arguments at instantiation
sites. Taking the following code snippet as an example, type
variable K

1 class C1<K> ... {
2 void foo() {
3 C2<K> c = new C2<>();
4 }
5 }
6 class C2<V> {}

0098-5589 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0008-0931-8767
https://orcid.org/0000-0002-4162-0404
https://orcid.org/0000-0002-4476-0541
mailto:lihaofeng@ict.ac.cn
mailto:lianli@ict.ac.cn

LI et al.: GENERIC SENSITIVITY: GENERICS-GUIDED CONTEXT SENSITIVITY FOR POINTER ANALYSIS 1145

is used as type argument when instantiating generic class C2
at line 3. Therefore, both of type variables K and V represent
the same concrete type. In this case, the concrete type (corre-
sponding to type variables K and V) can distinguish different
contexts of the methods constrained by K and V (i.e., the meth-
ods or their declaring classes declared with the information of
generic types).

Our context customization scheme for generics is based on
the observation that generic instantiation sites, i.e., locations
instantiating generic with concrete types, can be served as
key context elements, but not preserved in existing context-
sensitive analyses, and thereby often leading to poor efficiency
and precision. As a result, we propose generic sensitivity:
instead of always picking the most recent traditional context
elements (i.e., call-sites, objects, types), we keep generic instan-
tiation sites as part of contexts and propagate such information
within generic classes and generic methods. This may sound
trivial but can be challenging, since type variables are prop-
agated across generic classes (e.g., inner generic classes/ob-
jects defined within other generic classes) or generic methods
(by calling other generic methods). So, the biggest challenge
lies in accurately determining the generic instantiation sites
of type variables. In our approach, we address this challenge
by augmenting contexts with generic instantiation informa-
tion, and propagate it along type variables efficiently. It should
be noted that regarding the elements that form the contexts,
both generic sensitivity and object sensitivity utilize alloca-
tion sites to build their respective contexts. Nevertheless, the
approaches these two techniques adopt to create the contexts
differ significantly. According to [14], [15], object sensitivity
builds its contexts using the receiver objects at the call sites,
whereas generic sensitivity builds its contexts using the sites of
generic instantiation.

We have implemented our approach in WALA [23] and
evaluated it against a set of 18 real-world applications, including
the DACAPO benchmark suite [24] and another 7 popular open-
source applications. We conduct comprehensive experiments
to compare generic sensitivity with state of the arts, including
both traditional and selective context-sensitivity approaches.
The evaluation results show that generic sensitivity effectively
facilitates existing context-sensitivity approaches in achieving
a new trade-off between efficiency and precision. For examples,
it enables a 1-object-sensitive analysis to achieve overall better
precision than a 2-object-sensitive analysis, with an average
speedup of 12.6× (up to 62× for chart). Additionally, it can
also contribute to enhancing the efficiency and precision of
selective context-sensitivity approaches like ZIPPER [25] and
ZIPPER-E [26], which are widely recognized as the state-of-the-
art selective context-sensitive pointer analysis.

To summarize, the paper makes the following contributions:
• We present generic sensitivity, a new context customiza-

tion scheme targeting generics. To the best of our knowl-
edge, this is the first attempt to optimize context-sensitive
pointer analysis for generic programming.

• We explain how to apply generic sensitivity to two main-
stream context-sensitive variants: k-object-sensitivity and
k-type-sensitivity.

• We have implemented different variants of generic sensi-
tive pointer analysis in WALA [23] and evaluated our im-
plementations against a large set of 18 popular real-world
applications, including the DACAPO benchmark suite and
7 popular open-source applications. Experimental results
show that generic sensitivity effectively enhances both tra-
ditional and selective context-sensitivity approaches, strik-
ing a new trade-off between efficiency and precision.

This article extends and improves upon the paper authored
by Li et al. [27], which was presented at the Proceedings of the
30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2022). In comparison, this article includes signifi-
cant extensions, expanding the content by approximately six ad-
ditional pages in a two-column format. The key enhancements
are summarized as follows:

• We introduced a local analysis which can infer actual type
parameter corresponding to generic type (Section III-A).

• We presented k-generic-sensitivity which extends original
1-generic-sensitivity to support arbitrary depth of context
(Section IV-C).

• We evaluated generic sensitivity with or without applying
ZIPPER and ZIPPER-E (Section V-G).

• We additionally implemented k-generic-sensitivity in
WALA and evaluated its precision and efficiency in our
benchmarks (Section V-H).

The rest of the paper is organized as follows. Section II
motivates our approach with an example and highlights its
key challenges. Section III formalizes context representation of
generic sensitivity. Section IV formally describes generic sen-
sitivity and explains how it can be adapted to object-sensitivity
and type-sensitivity. Section IV-C illustrates how to extend our
generic sensitivity when the depth of context is more than 1.
We evaluate the effectiveness and efficiency of generic sen-
sitivity in Section V. Section VI reviews related work and
Section VII concludes this paper.

II. MOTIVATION

We first give a brief introduction on context-sensitive pointer
analysis (Section II-A). Then we illustrate the limitations of
existing context-sensitive pointer analysis in analyzing generics
with an example (Section II-B). Finally, we motivate generic
sensitivity, and discuss its main challenges (Section II-C).

A. Context Sensitivity

Pointer analysis computes the points-to sets of program vari-
ables, i.e., set of abstract locations that can be pointed to
by a variable v (denoted as pts(v)). Typically, abstract loca-
tions are represented as allocation sites (instructions allocat-
ing objects, e.g., new in Java), denoting all dynamic object
instances allocated by the instruction at run time. In context-
sensitive analysis, both variable v and abstract location o
are qualified with a context, effectively distinguishing their
different dynamic instances. Hence, instead of computing
whether o ∈ pts(v) as in context-insensitive analysis, context-
sensitive analysis computes the relation (co, o) ∈ pts(cv, v),

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

1146 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

where co and cv are the context for abstract location o and
variable v, respectively.

Call-site sensitivity, object sensitivity, and type sensitivity
are three main variants of context sensitivity, where call-sites,
allocation sites of receiver objects, and types of receiver objects
are considered as context elements, respectively. To ensure ter-
mination, k-limiting is applied to bound the number of context
elements to k. In practice, k is often set to no larger than 2
for scalability.

Among the above three variants, object sensitivity and type
sensitivity (as a cheaper alternative) are considered to be more
suitable in analyzing object-oriented programs. In particular,
object sensitivity is more precise and efficient than call-site sen-
sitivity and is considered as the most precise context-sensitivity
variant for Java [28], [29]. In k-object-sensitivity, an object o0
is cloned multiple times, each with a different context of length
k − 1, referred to as the heap context. A heap context is in the
form of [ok−1, ..., o1], where oi (1< i≤ k − 1) is an allocator
of oi−1, i.e., oi−1 is allocated in a method with oi being a
receiver object. Thus, method o0.m (with o0 be a receiver
object) will be analyzed context-sensitively multiple times: for
each distinct heap context co, the method is analyzed once under
the method context [co, o0]. In type sensitivity, contexts are
constructed in the same fashion, except that the context element
oi (in object-sensitivity) is replaced with its type. As a result,
multiple object-sensitive contexts will be merged and analyzed
together in type-sensitive analysis, yielding less precise results.

B. A Motivating Example

Let us study context-sensitive pointer analysis with
an example in Fig. 1. The example uses generic class
java.util.HashMap. Hereafter, we only discuss the two
main stream context-sensitive variants for object-oriented
programs: object-sensitivity and type-sensitivity.

In the main method, there are two HashMap objects: O1

(line 2) and O2 (line 7). Object OA is created and put into O1

at line 3, then retrieved back via the get method at line 4.
Similarly, object OB is created and put into O2 at line 8, then
retrieved back at line 9. As a result, the two cast operations (line
5 and 10) will never fail.

The simplified code snippet of HashMap is given in lines
13 - 38. HashMap stores data in table, an array of Node
objects (line 15). The put method creates a Node object and
stores it in table (lines 16-19). The get method retrieves the
corresponding Node object from table, then returns its value
via the getValue interface (lines 20-23). Note that the Node
class (lines 24-38) is implemented as an inner generic class,
and it is instantiated with the type variables (i.e., K and V) of
its outer class HashMap when creating a Node object.

k-Object Sensitivity. In 1-object sensitive analysis (abbrevi-
ated as 1-obj), the receiver object of the call to put/getmethod
at line 3/4 and line 8/9 are O1 and O2, respectively. Hence, the
call to put/get methods at different call-sites can be distin-
guished using contexts [O1] and [O2]. In put (line 17), with
1-obj analysis, we get pts([O1],n) = {O4} and pts([O2],n) =
{O4}. Then in the constructor of Node (lines 27-30), since O4

Fig. 1. Simplified code example of java.util.HashMap.

is the only receiver object, we get pts([O4],key) = {“A”,“B”}
and pts([O4],value) = {OA, OB}. As a result, call to O1.get
and O2.get will return a value pointing to both OA and OB ,
leading to cast-may-fail false alarms at line 5 and line 10.

This example can only be precisely analyzed when the con-
text depth is set to more than 1. In put (line 17), with 2-obj
analysis, we get pts([O1],n) = {(O1, O4)} and pts([O2],n) =
{(O2, O4)}, where object O4 is qualified with a heap context.
Hence, the constructor of class Node (lines 27-30) is analyzed
twice with 2 distinct contexts: [O1, O4] and [O2, O4]. Thus, we
can precisely compute the pointer values of key and value
as pts([O1, O4],key) = {“A”}, pts([O2, O4],key) = {“B”},
pts([O1, O4],value) = {OA}, and pts([O2, O4],value) =
{OB}. Finally, we can correctly analyze that pts(v1) = {OA}
and pts(v2) = {OB}, avoiding false cast-may-fail alarms.

k-Type Sensitivity. Type-sensitive analysis is less precise than
object-sensitive analysis. Hence, 1-type analysis cannot dis-
tinguish the pointer values of v1 and v2, yielding the same
false alarms. Moreover, the standard 2-type analysis cannot
distinguish the context in analyzing the constructor (and other
methods) of Node either, since both O1 and O2 have type
HashMap (for efficiency, the actual type parameters of generic-
typed local variables are often omitted in the byte code). The de-
fault type-sensitive analysis can be extended with a simple anal-
ysis as illustrated in Section V-A, to infer the actual parameters

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GENERIC SENSITIVITY: GENERICS-GUIDED CONTEXT SENSITIVITY FOR POINTER ANALYSIS 1147

for variables with generic types. Thus, 2-type analysis can
then distinguish the context using the distinct generic types
HashMap<String,A> and HashMap<String,B>.

For clarity, we simplify the example in Fig. 1 so that it can be
precisely analyzed by a 2-obj analysis. The real implementation
of HashMap is much more complicated and may require a
deeper context. Various algorithms and design patterns wrap
generic classes insider other generic classes, which can be
precisely analyzed only with a very deep context. For instance,
HashSet is implemented by encapsulating HashMap and it
can only be precisely analyzed with at least 3-object-sensitivity.
Existing work [25], [30] also summarized numerous scenarios
where a deeper context (≥3) is required. However, as the num-
ber of contexts grows exponentially with the depth, it is often
infeasible to scale 3-obj analysis to real-world applications [21],
[31], [32].

C. Generic Sensitivity

Generics enable us to create standardized algorithms for
processing various types of data to enhance the reusability of
algorithms. Many sophisticated algorithms necessitate encapsu-
lating and integrating numerous classes and methods for prac-
tical deployment. So these classes and methods are constrained
by identical generic types within each call stack. In Fig. 1,
Node offers support for HashMap and consistently upholds
the equivalent generic type constraint as HashMap. Hence, the
key to ensure precision is to keep the instantiation location,
i.e., location instantiating generic type parameters with concrete
types, as part of context for generics. As such, distinct pointer
values flow into/from generic methods and generic objects can
be effectively identified.

In our example in Fig. 1, line 2 and line 7 instantiate the
generic class HashMap with actual types. So, generic instan-
tiation locations of HashMap are O1 and O2 respectively.
Therefore the generic instantiation locations of the call to
put/get method at line 3/4 and line 8/9 are O1 and O2,
respectively. Hence, the call to put/get methods at differ-
ent call-sites can be distinguished using contexts O1 and O2.
And then actual types are passed as type variables: 〈K,V 〉
of HashMap to instantiate Node at line 17. So, instantiation
locations O1 and O2 can not only differentiate the methods in
class HashMap under different call-stack but also can distin-
guish the methods in Node. In other words, generic instanti-
ation locations of the call to constructor/getValue of Node
at line 17/22 are O1 and O2 respectively. Hence, the call to
constructor/getValue of Node at different call-stacks can be
distinguished only using contexts O1 and O2. As a result, with
generic-sensitivity, we can compute the same precise result as
2-obj analysis, but with less cost by avoid computing points-to
information under potentially more contexts: pts(O1,key) =
{“A”}, pts(O2,key) = {“B”}, pts(O1,value) = {OA}, and
pts(O2,value) = {OB}, where O1 and O2 serve as the
generic instantiation locations in this case.

Someone may wonder if we can discard the receiver objects
of generic classes and use their heap contexts as the contexts
of target methods when the current methods are within generic

Fig. 2. Example of generics.

classes? It seems feasible for the code in Fig. 1. For example,
when we analyze the code at line 22 in get method whose
declaring class is generic class HashMap, we discard the re-
ceiver object O4 and use its heap contexts [O1] and [O2] as
contexts. However, this approach does not work for generic
methods. As shown in Fig. 2, the generic method foo (with
type parameter E) is defined in generic class G (lines 6 - 13)
with type parameter T. At line 8, we create a new generic object
with type variable T, whose actual type is instantiated (to A) at
line 2. Hence, we should pick O1 as the context in analyzing the
method call m.bar at line 9. On the other hand, line 10 instan-
tiates the generic class M with type variable E. In our generic-
sensitivity approach, the instantiation location of E, represented
by O2 at line 3, is chosen as the context for analyzing the
method call n.bar at line 11. However, if we were to adopt the
previously mentioned approach of omitting receiver objects of
generic classes, the context for n.bar would be determined as
O1. As a result, it would be the same context as m.bar, failing
to distinguish between contexts.

To effectively analyze the above example, we need to pre-
cisely identify the actual instantiation location of type variables
under different contexts. This may require a context-sensitive
pointer analysis to compute, as will be explained in Section III.

III. PRELIMINARIES

In generic sensitivity, we precisely track propagation of type
variables by augmenting context with generic instantiation loca-
tions, which are generated context-sensitively during the analy-
sis. This section will formalize the standard context sensitivity
and offer necessary extensions for generics.

A. Context Customization

The traditional context c is extended to a tuple 〈c,G〉, where
G records all instantiation sites for available type variables. For
non generic-related methods, G is ∅. The size of G is bounded
to the number of available type variables.

For object-sensitive analysis, G maps a type variable to its
instantiate location (more precisely, to the abstract object cre-
ated at the instantiate location). For type-sensitive analysis, G
maps a type variable to its instantiated concrete type. In Java,
developers can instantiate a generic class with explicit types

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

1148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

(a) (b)

Fig. 3. Generic instatiation in Java.

(Fig. 3(a)), or without giving any actual type arguments. In the
later case, the generic class is by default instantiated with type
Object. For instance, in Fig. 3 (b), s is created at line 3
with type HashSet<Object>. At line 4, an object with
type A is firstly created and implicitly cast to Object, before
it is put in s.

Since type-sensitive analysis relies on concrete type informa-
tion, it will fail to distinguish different contexts when generic
classes are instantiated without giving actual type parameters,
leading to imprecise results. We can employ a precise inter-
procedural pre-analysis to infer actual type arguments of gener-
ics as [33], [34], [35]. However, the cost of such a pre-analysis
may offset the benefits brought by more precise type informa-
tion. Hence, we apply a simple analysis to infer actual instan-
tiated types of a generic object by examining its local usages,
as follows.

In code of Java, actual type parameters are only declared
in the signatures of formal parameters (i.e., foo(Set 〈A〉x)),
the signatures of fields (i.e., Set 〈A〉 f ;) and type signature of
partial local variables (i.e., Set 〈A〉x= ...). However, there are
cases where it is not always possible to obtain the actual type
parameters directly at the instantiation sites of generic classes
or generic methods. Taking the following code snippet as an
example, to get the concrete type corresponding to type variable
T at line 4, we need to infer the actual type

1 void main() {
2 C<A> v1 = new C<>();
3 C v2 = v1;
4 foo(v2);
5 }
6 void <T> foo(C<T> p){}

parameter of variable v2 which can only be found at signa-
ture of variable v1. To infer the actual type parameters, we
designed a local analysis. Table I shows the constraints of our
local inference. We use foo(Set 〈A〉x) to represent method
foo with formal parameter x whose signature is Set 〈A〉. For
clarity, we define method foo with one parameter only. Simi-
larly, field signature and variable signature are defined at the
rules of FIELD DECLARATION and VARIABLE DECLARATION

respectively. We use R(x) to represent the inferred results (the
mappings from type variables to actual type parameters) where
x represents variable or field used in the current method. It is
forbidden to assign several actual type parameters to a type
variable. So, R(x) is singleton. Without loss of generality, we
consider a simplified subset of Java with six canonical state-
ments in Table I:

TABLE I
ACTUAL TYPE PARAMETER INFERENCE. THE GENERIC TYPE

OF CLASS SET IS E

Kind
Statements in Method:
foo (Set 〈A〉 x)

Constraints

FORMAL

PARAMETER
x R(x) = {E :A}

FIELD

DECLARATION
Set 〈A〉 f ; R(f) = {E :A}

VARIABLE

DECLARATION
Set 〈A〉x= ... R(x) = {E :A}

ASSIGN x= y; R(x) = R(y)
STORE y.f = x;

R(x) = R(f)
LOAD x= y.f ;

• FORMAL PARAMETER, FIELD DECLARATION and
VARIABLE DECLARATION. Actual type parameters
can be captured directly by parsing the method signature,
field signature or variable type signature if they are
declared in these signatures.

• ASSIGN. If a variable can be assigned to another, both
of them should contain the same actual type parameter.
Otherwise, compilation errors will occur.

• STORE and LOAD. The actual type parameter can be prop-
agated to local variables by field access statements, so, we
maintain consistent actual type parameter on both sides of
the statement.

According to the constraints in Table I, actual type parame-
ters can be inferred if they are declared. However, not all actual
type parameters will be explicitly declared in the Java code. To
handle such conditions, we designed a local analysis to infer
type parameters (Definition III.1).

Definition III.1: Type parameter inference: if generic object
O instantiating generic class with formal type parameter T does
not escape its declared scope and all its usages of T can be
resolved to type C, we can safely regard C as the actual type
parameter instantiating T .

We perform a simple conservative escape analysis where a
variable escapes a scope if 1) it is accessible outside the scope,
2) it returns from the scope, or 3) it is stored to another escaping
variable. As in Fig. 3(b), if s is not returned (i.e., does not
escape its declared scope foo), we can infer that s instantiates
HashSet with type A, i.e., s has type HashSet<A>.

Finally, if we fail to resolve the actual type parameters in-
stantiating a generic class, we use the instantiation location as a
pseudo type. In the example Fig. 3(b), the actual type parameter

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GENERIC SENSITIVITY: GENERICS-GUIDED CONTEXT SENSITIVITY FOR POINTER ANALYSIS 1149

Fig. 4. Five types of statements analyzed by context-sensitive pointer
analyses.

of variable s at line 3 cannot be inferred (due to an escaped/re-
turned variable). In such scenario, we use a pseudo type T3 to
instantiate s, i.e., the statement at line 3 is regarded as Set
< T3 > s = new HashSet(). This allows us to label this
generic context for potential context distinction. In this way, the
pseudo type T3, denoted for the current instantiation site, can
be seen as a form of object sensitivity, and is employed when
inferring the actual type parameters is not feasible. As such,
we are effectively applying object-sensitivity-like approach in
analyzing generics since each instantiation location is regarded
as a distinct type even though sometimes it is not possible to
deduce the actual type parameters.

B. A Simplified Java Language

Without loss of generality, we consider a simplified subset
of Java, with five types of labeled statements in Fig. 4. We
write “x= new C 〈T :A〉” for object allocation. If C is a
generic class, T is its formal type parameter, and A is the actual
type parameter instantiating T . Otherwise, both T and A is
Nil. Similarly, a generic method call “x= v0.m

′ 〈T :A〉 (v1)”
instantiates its formal type parameter T with actual type pa-
rameter A. Both T and A are Nil for non-generic method
invocations. For clarity, our formalization considers NEW and
Call statements with one type parameter only. The general
forms of NEW and Call statements with multiple parameters
can be analyzed in the same fashion.

The statement “x= newC(...)” in Java is modeled as “x=
newC;x. 〈init〉 (...)”, where 〈init〉 (...) is the corresponding
constructor invoked. Control flow statements are irrelevant for
context-sensitive flow-insensitive analysis hence skipped. Ac-
cesses to array elements are modeled by collapsing all the
elements into a special field of the array. In addition, every
method is assumed to return via the variable ret. Since we
formalize a method call with only one actual parameter, each
method also has only one formal parameter p.

Given a program, let M,F,H,V,L,T be its sets of methods,
fields, allocation sites, local variables, statement labels and
types, respectively. We use the symbol C for the universe of
contexts. The following auxiliary functions are used in our
rules:

• methodOf: L �→M

• methodCtx : M �→ ℘(C)
• dispatch : M×H �→M

• pts : (V
⋃

H× F)× C �→ ℘(H× C)
• typeOf : V �→ T

where methodOf gives the containing method of a state-
ment, methodCtx maintains the contexts used for analyzing a

Fig. 5. Rules for object sensitivity.

method, dispatch resolves a call to a target method, pts records
the context-sensitive points-to information for a variable or
field, and typeOf returns the declared type of a variable.

Given a list of context element c= [e1, ..., en] and a context
element e, we use the notation e++c for [e, e1, ..., en] and ck
for [e1, ..., ek] where k < n.

IV. GENERIC SENSITIVITY

In this section, we will illustrate context customization
scheme formally.

A. Customizing Object Sensitivity

Let G := T �→H maps a type variable T ∈ T to an allocation
site Ol ∈H (identified by label l). The universe context is C=
H

∗ ×G. We define the following three functions:

Gen(G, T , A,Ol) =

⎧
⎨

⎩

∅ T =Nil
[T →Ol] T
=Nil ∧A /∈G
[T →G(A)] T
=Nil ∧A ∈G

Append(G,Gm, T , A,Ol) =⎧
⎨

⎩

G T =Nil
G � [T →Ol] T
=Nil ∧A /∈G �Gm

G � [T →G �Gm(A)] T
=Nil ∧A ∈G �Gm

Ctx(ctx,O0, G) = 〈O0 ++ctx,G〉
where the function G(A) looks up the mapped allocation site
of type variable A.

The first two functions are used to generate G for NEW and
CALL statements, and the last function is used to construct
contexts by combining standard context and generic context.
Fig. 6 gives the rules for analyzing NEW and CALL statements
in Fig. 4. Except for [NEW] and [CALL], the other 3 rules are
same as standard k-obj analysis(in Fig. 5). We only list [NEW]
and [CALL], since the other 3 rules are same as in Fig. 5

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

1150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

Fig. 6. Rules for k-Obj/k-type analysis with generic customization.

In [NEW], an abstract heap object Ol ∈H is created. Given
the method context ctx= 〈c,G〉, Ol’s heap context hctx is
constructed as 〈ck−1, G

′〉, where ck−1 selects the first k − 1
context elements from c as in standard k-obj analysis and G′ is
generated by the Gen function, as follows.

• If Ol is a non-generic object, i.e., formal type parameter T
is Nil, G′ is set to ∅. Thus, method calls with non-generic
objects as their receiver objects are analyzed same as in
standard object-sensitive analysis.

• If Ol is intantiated with a concrete type, i.e., T
=Nil ∧
A /∈G, G′ is set to [T �→Ol]. As a result, the instantiate
location l is regarded as part of context in analyzing a
method call with Ol being a receiver object.

• At last, if Ol is instantiated with a type variable, i.e., T
=
Nil ∧A ∈G, we identify the actual instantiate location
of A by looking up the context of l’s containing method.
G′ is set to [T �→G(A)], enforcing that the actual generic
instantiation location is always part of the context.

Note that the Gen function does not preserve existing map-
ping of type variables in G. Since those type variables are
invisible in analyzing method calls where Ol is the receiver
object, there is little benefit to preserve them in the heap
context of Ol.

In [CALL], let O0 be a receiver object of the method call
with heap context hctx= 〈c,G〉 and let ctx= 〈cm, Gm〉 be a
context of m. Similar to [NEW], a context ctx′ = 〈O0 ++c,G′〉
is constructed by Ctx function in analyzing m′, where O0 ++c
appends the receiver object O0 with O0’s heap context in a
standard manner and G′ is generated by the Append function,
as follows.

• If f is a non-generic call, i.e., T =Nil, G remains
unchanged.

• If f is a generic call instantiated with a concrete type, i.e.,
T
=Nil ∧A /∈G �Gm, G′ is generated by adding the
new mapping T �→Ol to G.

• If f is a generic call instantiated with a type variable,
i.e., T
=Nil ∧A ∈G �Gm, G′ is generated by intro-
ducing to G a mapping: from T to its actual instantiate
site G �Gm(A). Note that available type variables can be
propagated from the receiver object (in which caseA ∈G),
or from the caller method (in which case A ∈Gm).

One may wonder whether the same type variable A may
exists in both G and Gm. In that case, by construction, A must
be introduced at the allocation site of generic object O0, by the
Gen function. Such information may be further propagated to
contexts of method m. In that case, both G(A) and Gm(A) are
resolved to the same location instantiating A.

In the conclusion of the rule, ctx′ ∈ methodCtx(m′) shows
how the context of a method are introduced. Initially, we have
methodCtx(main) = {〈[], ∅〉}.

Let us revisit the example in Fig. 2. A generic object O1

is created at line 2. Hence, we have (O1, 〈[],T �→O1〉) ∈
pts(g, 〈[], ∅〉) ([NEW]). Line 4 invokes the generic method
foo〈E〉 where O1 is the receiver object and O2 is the ac-
tual parameter, i.e., g.foo<E:B>(b). Hence, we analyze
the target method foo with context 〈[O1], [T �→O1,E �→O2])〉
([CALL]). In foo, the object created at line 8 (O3) is instan-
tiated with type variable T. Hence, it has the generated heap
context 〈[O1],K �→O1〉. Similarly, O4 at line 10 has the heap
context 〈[O1],K �→O2〉. The two method call at line 9 and
10 are then analyzed with distinct contexts. To summarize, G
always maps an available type variable to its actual instantiation
location, to encode actual instantiation location of generics as
part of context.

B. Customizing Type Sensitivity

The k-type-sensitivity is a coarse approximation of the
k-object-sensitivity, with a trade-off between precision and
efficiency in favor of the latter. Similarly, we customize
k-type-sensitivity to improve efficiency with sacrificing
some precision.

For type-sensitive analysis,G := T �→ T maps a type variable
T ∈ T to an actual type T ∈ T. The Gen, Append and Ctx
functions are defined as follows.

Gen(G, T , A,Ol) =

⎧
⎨

⎩

∅ T =Nil
[T →A] T
=Nil ∧A /∈G
[T →G(A)] T
=Nil ∧A ∈G

Append(G,Gm, T , A,Ol) =⎧
⎨

⎩

G T =Nil
G � [T →A] T
=Nil ∧A /∈G �Gm

G � [T →G �Gm(A)] T
=Nil ∧A ∈G �Gm

Ctx(ctx,O0, G) = 〈typeOf(O0) ++ctx,G〉
Compared to object-sensitivity, the object allocation site is not
used by the three functions.

Let us study the example in Fig. 2 again. A generic object
O1 is instantiated with actual type A at line 2. Hence, we have
(O1, 〈[],T �→ A〉) ∈ pts(g, 〈[], ∅〉) ([NEW]). At line 4, we have
the generic method call g.foo<E:B>(b) where O1 is the
receiver object. Since O1 has the declared type G, we ana-
lyze the target method foo with context 〈[G], [T �→ A,E �→ B])〉
([CALL]). In foo, the object created at line 8 (O3) is instantiated
with type variable T. Hence, it has the generated heap context
〈[G],K �→ A〉. Similarly, O4 at line 10 has the heap context
〈[G],K �→ B〉. Finally, the method bar is analyzed under two
contexts 〈[M],K �→ A〉 and 〈[M],K �→ B〉. It is worth noting that

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GENERIC SENSITIVITY: GENERICS-GUIDED CONTEXT SENSITIVITY FOR POINTER ANALYSIS 1151

Fig. 7. Code example for k-generic sensitivity.

in our extended type analysis, the generic type and the recorded
actual instantiated types form the complete instantiated type
signatures for generics.

C. K-Limiting

Just like three mainstream variants of context-sensitivity
(k-object sensitivity, k-type sensitivity and k-call-site sensitiv-
ity), the generic can be wrapped by another generic. So, we
have to limit the depth of generic contexts to avoid unbearable
number of contexts. However, we cannot increase the depth at
every generic allocation since generic instantiation is less preva-
lent than traditional contexts in Java programs. Taking Fig. 1
as an example, the context depth of the constructor (line 17)
of Node cannot be increased because the actual types (K,V)
of Node are type variables, and actual instantiate locations can
be retrieved according to heap context and context of current
method. We will discuss how to extend our generic sensitivity
when the depth of context is more than 1 by using an example
in Fig. 7.

In Fig. 7, we defined a class Q with a generic type E (line
13-35). In class Q, there is a field inner which points to the
InnerQ object OIQ created at line 15. there are two meth-
ods putOrCreate(line 16-18) and get(line 19-21), both of
which just invoke the methods in class InnerQ. There is a
HashMap object OHM being created at line 23 and assigned to
field map. The object OHM is instantiated with type arguments:

String and Object. In method putOrCreate, an A object
OA (line 26) is created and putted in OHM when the parameter
e is null, otherwise parameter e is putted in OHM. The get
method retrieves the corresponding object from map, then re-
turns it(line 31-33).

Similar with the main method in Fig. 1, in the main method
of Fig. 7, there are two Q objects: O1 (line 2) and O2(line 7).
Because the second actual parameter of invoke putOrCreate
at line3 is null, object OA is putted into O1 and then retrieved
back via the get method at line 4. Similarly, object OB is
created and put into O2 at line 8, then retrieved back at line 9.
Because the second actual parameter of invoke putOrCreate
at line 8 is not null, O2 will not contain object OA. As a result,
the two cast operations (line 5 and 10) will never fail. Because
object OA is created in a condition branch, we can distinguish
it by using path-sensitivity.

Similar with the example in Fig. 1, line 2 and line 7 in-
stantiate the generic class Q with actual types. Those actual
types are passed as type variables of Q to instantiate InnerQ
at line 15. Hence, the corresponding location (O1 and O2)
should be regarded as the context in analyzing methods of
class InnerQ. So, with 1-object-sensitivity, we can distinguish
OHM with different contexts at line 23, meanwhile, we can also
distinguish OA with different contexts at line 26. However, the
type variables of OHM are String and Object, the outermost
corresponding location (O1 and O2) cannot be propagated into
HashMap continuously. As a result, OA and OB will be con-
fused in OHM, if the depth of context is set to 1.

If we set the context depth to 2, we combine the outer
corresponding location (O1 and O2) and the inner correspond-
ing location (OHM), and then propagate it into class Node in
Fig. 1, then we can distinguish the field value. As a re-
sult, we can compute a precise results: pts(v1) = {OA}, and
pts(v2) = {OB}.

If we use object sensitivity to analyze the example in Fig. 7,
we have to set the context depth more than 4: 2-layer contexts
can distinguish the methods in InnerQ, another 2-layer con-
texts to distinguish the methods in Node.

In Section III-B, we have formalized the representation and
propagation of generic context. In this section, we will extend
G and revise functions Gen and Append to adapt k-generic
sensitivity where k>1.

1) Customizing Object Sensitivity: We changeG into a array
[Gk,...,G1], where Gi := T �→H maps a type variable T ∈ T to
an allocation site Ol ∈H (identified by label l). Meantime, the
Gen and Append functions are changed as follows.

Gen(G, T , A,Ol) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G T =Nil
[T →Ol] ++G T
=Nil∧

A /∈G1

G1[T]→G1(A) T
=Nil∧
A ∈G1

Append(G,Gm, T , A,Ol) =⎧
⎨

⎩

G T =Nil
G1 � [T →Ol] T
=Nil ∧A /∈G1 �Gm1

G1 � [T →G1 �Gm1
(A)] T
=Nil ∧A ∈G1 �Gm1

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

1152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

For Gen functions, the changes are listed as follows.
• If formal type parameter T is Nil, we just return the

generic context of current method.
• If formal type parameter T
=Nil and actual type param-

eter A /∈G, the generics propagation is stopped. So, we
create a new generic mapping [T �→Ol] and append to the
current generic context by using “++” operator.

• At last, if Ol is instantiated with a type variable, i.e., T
=
Nil ∧A ∈G, we identify the actual instantiate location
of A by looking up the context of l’s containing method.
We can generate the innermost generic mapping G1 of
current generic context array to [T �→G(A)].

For Append functions, we just generate the innermost
generic mapping by following the constraints in Section IV.

As showing in Fig. 6, we limit the depth of generic-context
by G′

n−1. In order to distinguish from k which represents the
limited depth of traditional context, we use n to represent the
limited depth of generic context.

Let us revisit the example in Fig. 7. We create generic ob-
jects O1(line 2) and O2(line 7) respectively. Hence, we con-
struct generic mappings [E �→O1] and [E �→O2] respectively.
And then the same generic mappings can be generated for
object OIQ at line 15. At line 23, we create generic mappings
[K �→OHM,V �→OHM] and append the generic mappings above to
generate two generic context array:[[E �→O1], [K �→OHM,V �→
OHM]] and [[E �→O2], [K �→OHM,V �→OHM]]. Finally, we can
distinguish the methods of Node in Fig. 1 according to the
generic context arrays above.

2) Customizing Type Sensitivity: For type-sensitive analy-
sis, Gi := T �→ T maps a type variable T ∈ T to an actual type
T ∈ T. The Gen and Append functions are revised as follows.

Gen(G, T , A) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G T =Nil
[T →A] ++G T
=Nil∧

A /∈G1

G1[T]→G1(A) T
=Nil∧
A ∈G1

Append(G,Gm, T , A) =⎧
⎨

⎩

G T =Nil
G1 � [T →A] T
=Nil ∧A /∈G1 �Gm1

G1 � [T →G1 �Gm1
(A)] T
=Nil ∧A ∈G1 �Gm1

Let us revisit the example in Fig. 7. We create generic
objects O1(line 2) and O2(line 7) respectively. Hence, we
construct generic mappings [E �→ A] and [E �→ B] respec-
tively. And then the same generic mappings can be gen-
erated for object OIQ at line 15. At line 23, we create
generic mappings [K �→ String,V �→ Object] and append
the generic mappings above to generate two generic con-
text array:[[E �→ A], [K �→ String,V �→ Object]] and [[E �→
B], [K �→ String,V �→ Object]]. Finally, we can distinguish
the methods of Node in Fig. 1 according to the generic context
arrays above.

V. IMPLEMENTATION AND EVALUATION

We evaluate generic sensitive pointer analysis by applying
and comparing our context customization scheme to an array

of pointer analyses at different precision. In total, there are
11 variants of standard pointer analyses. For illustration, we
mainly compare two groups of them in this section: object-
sensitive group (GenO, 1-obj, Gen+1-obj, 2-obj) and type-
sensitive group (GenT, 1-type, Gen+1-type, 2-type). Addition-
ally, We compare the precision and efficiency of generic sensi-
tivity with or without applying ZIPPER [25] and ZIPPER-E [26],
the state-of-the-art selective context-sensitivity approaches pro-
vided by TAI-E [36].

Hereafter, we use GenT as the customization scheme for
type-sensitivity and GenO as the customization scheme for
object-sensitivity. By default, GenT and GenO are our con-
text customization schemes applied to the insensitive Ander-
sen’s analysis [37]. In this case, only generic objects/meth-
ods are analyzed context-sensitively. The notation Gen+k-
obj represents the GenO scheme applied to k-obj analysis,
and Gen+k-type represents the GenT scheme applied to k-
type analysis. In other words, Gen+k-obj scheme uses both
generic information and allocation sites of receiver objects
as contexts for generic-related methods and uses allocation
sites of receiver objects as contexts for the remaining meth-
ods. The same principle applies to other variants of context-
sensitivity as well. The notations ending in Z represent ap-
plying ZIPPER to the target analysis, e.g., 1-objZ represents
applying ZIPPER to 1-obj analysis, which means that only the
methods selected by ZIPPER are analyzed by 1-obj. Simi-
larly, The notations ending in ZE represent applying ZIPPER-E

to the target analysis, e.g., 1-objZE represents applying
ZIPPER-E to 1-obj analysis. Note that ZIPPER-E is able to achieve
significantly better efficiency than ZIPPER with comparable
precision [26].

A. Implementation

We have implemented our generic customization scheme
in WALA and applied it to several pointer analysis variants:
object-sensitive analysis, type-sensitive analysis, and insensi-
tive analysis. There is a default implementation of k-obj anal-
ysis in WALA. However, instead of setting the heap context
depth to k-1, it sets both method context and heap context to
the same depth k. Hence, we revised the default implementation
to be consistent with the standard k-obj definition [14], [15],
[18]. We also implemented in WALA a new k-type analysis
according to its original definition [18].

Sometimes, generic instantiation information may be wiped
out in Java bytecode. For instance, Java tends to erase the
actual instantiation type of a local variable if it is assigned
from another generic typed variable. Hence, we apply simple
type inference based on the rule that the LHS and RHS of an
assignment must have identical generic types.

We disable the exclusion option in WALA which can exclude
some packages of JDK because those packages in the exclusion
are wildly used in all benchmarks. For native code, we use
the summaries provided by WALA. We disable the reflection
option in WALA since it fails to analyze most benchmarks even
with insensitive pointer analysis.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GENERIC SENSITIVITY: GENERICS-GUIDED CONTEXT SENSITIVITY FOR POINTER ANALYSIS 1153

TABLE II
NUMBER OF GENERIC OBJECT ALLOCATIONS (ABBREVIATED AS GC) AND

GENERIC METHOD INVOCATIONS (GM). #S IS THE NUMBER OF INSTANTIATE

LOCATIONS, AND #A IS THE NUMBER OF ACTUAL TYPE ARGUMENTS

Programs
Application JDK

GC GM GC GM
#S(#A) #S(#A) #S(#A) #S(#A)

antlr 21(37) 1(1) 503(701) 262(397)
bloat 304(376) 8(8) 342(472) 217(348)
chart 198(277) 39(39) 532(741) 280(420)

eclipse 74(97) 32(32) 349(479) 222(353)
fop 128(195) 4(4) 586(810) 293(431)

hsqldb 102(126) 4(4) 626(851) 342(483)
jython 101(138) 5(5) 346(476) 221(352)
luindex 54(70) 8(8) 452(620) 254(399)
lusearch 54(70) 8(8) 452(620) 254(399)

pmd 187(249) 9(9) 590(810) 308(445)
xalan 35(56) 1(1) 348(482) 217(348)

antlr4 345(450) 1,213(1,225) 610(846) 324(466)
byte-buddy 342(430) 257(261) 380(523) 244(376)

findbugs 455(617) 93(102) 570(794) 295(432)
javassist 60(74) 13(13) 341(470) 218(349)

jflex 21(28) 0(0) 509(704) 265(400)
junit 46(52) 55(56) 393(537) 251(383)

modelmapper 335(416) 206(210) 379(522) 244(376)

B. Setting

We evaluate the 18 Benchmarks in Table II, including the
popular DACAPO suite (top half of the table) and 7 popular open
source programs (bottom half of the table). All experiments are
conducted on an Intel Core(TM) i5-10210U laptop (1.6GHz)
with 40 GB of RAM, running Unbuntu 20.04.01. As in pre-
vious work [20], [21], [25], [30], the JDK version is JDK1.6
(1.6.0_30) and we set a time budget of 90 minutes in analyzing
each benchmark. We run each benchmark 5 times and report
the average analysis time of the 5 runs.

Our evaluation answers the following research questions:
• RQ1. How extensively is generics used in real-world

applications?
• RQ2. Can generic sensitivity improve precision over ex-

isting context-sensitive approaches?
• RQ3. Can generic sensitivity improve efficiency over ex-

isting context-sensitive approaches?
• RQ4. Does generic sensitivity offer a better trade-off than

standard context-sensitive analyses?
• RQ5. Can generic sensitivity improve precision and ef-

ficiency over state-of-the-art selective context-sensitivity
approaches, ZIPPER and ZIPPER-E?

• RQ6. How the precision and efficiency of k-generic sen-
sitivity change as k increases?

• RQ7. Can local analysis improve precision of generic
sensitivity?

C. RQ1. Generic Usages

Table II summarizes the generic usages in each benchmark.
We separate the usages in application code with those in JDK
libraries which are transitively invoked by applications. As
shown in Table II, there are extensive usages of generics:

Fig. 8. Percentages of generic object allocations with actual types. WA is
with actual types, NA is without actual types, WA-JDK and NA-JDK are
generic object allocations in JDK with or without actual types.

findbugs has the largest number of generic object allocations
(455) and antlr4 has the largest number of generic method
invocations (1,213). Although some application, e.g., antlr,
uses generics infrequently. Its underlying JDK library makes
extensive usages of generics, suggesting the necessity of an
optimized context-sensitive pointer analysis targeting generics.

Fig. 8 depicts the percentages of generic usages with actual
type arguments, including those usages where our simple con-
servative type inference analysis (Section III) can infer actual
type arguments. The WA is the percentage of cases that our
local analysis can deal with, and the NA represents the other
cases. The number of actual types inferred is small. As shown in
Fig. 8, the percentages are quite low for DACAPO Benchmarks.
The reason is that DACAPO is released only a few years after
generics being introduced into Java, and many Java applications
at that time did not use the new generic feature (i.e., instan-
tiating generics with actual type parameters). The percentage
is much higher (>%70) for the 7 open-source applications,
showing that new applications commonly use modern generic
features supported by the language.

Comparing antlr4 to its earlier version antlr, there are
much more generic usages in antlr4, confirming that Java
generics is widely adopted in modern Java applications.

Generics is extensively used in modern Java applica-
tions and the underlying JDK library, suggesting the neces-
sity to develop customized context-sensitive pointer analysis
for generics.

D. RQ2. Precision

Following [30], [31], [32], we measure the precision of
context-sensitive analyses using four basic metrics: #call-edges
(number of call graph edges), #reach-methods (number of
reachable methods), #poly-call (number of polymorhpic calls
discovered), and #cast-may-fail (number of cast operations that
may fail). As their names suggest, these metrics are obtained by
different client applications of context-sensitive pointer analy-
ses. All client applications are sound. Hence, for all the metrics,
lower is better.

Since our approach introduces extra context-elements on top
of standard k-obj or k-type analyses, Gen+k-obj (Gen+k-type)

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

1154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

TABLE III
EFFICIENCY AND PRECISION METRICS OF DIFFERENT ANALYSES ON DaCapo BENCHMARKS

Program Metrics CI
obj type

GenO 1-obj Gen+1-obj 2-obj Gen+2-obj GenT 1-type Gen+1-type 2-type Gen+2-type

antlr

Time (s) 5.8 7.0 26.9 14.3 58.8 65.8 9.9 9.3 11.3 16.6 14.5
#cast-may-fail 833 495 729 408 414 386 507 739 412 723 408
#poly-call 1,513 1,248 1,374 1,184 1,167 1,166 1,252 1,418 1,211 1,275 1,178
#reach-methods 7,324 7,020 7,171 6,953 6,962 6,935 7,020 7,201 6,966 7,142 6,936
#call-edge 42,111 36,667 39,795 35,803 35,808 35,723 36,691 39,987 35,942 38,100 35,763

bloat

Time (s) 11.9 12.9 242.8 178.0 - - 12.9 26.7 26.0 274.5 183.4
#cast-may-fail 2,018 1,459 1,890 1,300 - - 1,471 1,903 1,303 1,884 1,297
#poly-call 2,223 1,693 1,999 1,608 - - 1,697 2,118 1,639 1,719 1,584
#reach-methods 9,207 8,934 9,066 8,835 - - 8,934 9,095 8,845 9,018 8,798
#call-edge 66,992 58,397 64,060 56,775 - - 58,421 64,464 56,913 61,173 56,203

chart

Time (s) 11.4 12.9 282.6 33.5 2,087.6 1,855.8 12.9 27.7 15.0 191.5 42.0
#cast-may-fail 1,795 1,175 1,668 982 979 913 1,210 1,691 998 1,661 979
#poly-call 2,010 1,637 1,869 1,535 1,503 1,498 1,646 1,939 1,585 1,715 1,542
#reach-methods 11,804 11,420 11,647 11,284 11,282 11,241 11,420 11,684 11,339 11,619 11,310
#call-edge 65,360 56,387 62,180 53,928 53,780 53,603 56,522 62,696 54,651 61,112 54,313

eclipse

Time (s) 7.9 9.8 28.8 14.7 97.4 92.4 9.9 11.4 10.8 27.8 16.3
#cast-may-fail 1,037 720 909 579 568 540 732 928 592 906 578
#poly-call 1,268 1,013 1,123 936 920 919 1,017 1,169 977 1,053 932
#reach-methods 7,731 7,474 7,572 7,345 7,347 7,320 7,474 7,612 7,410 7,545 7,326
#call-edge 44,320 38,293 41,838 36,150 36,068 35,983 38,297 42,127 37,225 39,742 36,203

fop

Time (s) 8.0 8.8 17.6 12.1 68.1 70.6 9.4 10.5 10.1 17.1 14.9
#cast-may-fail 812 485 708 397 411 383 497 718 400 702 396
#poly-call 1,136 861 990 790 773 772 865 1,034 817 885 784
#reach-methods 6,847 6,547 6,709 6,480 6,489 6,462 6,547 6,739 6,493 6,674 6,463
#call-edge 37,230 32,077 35,198 31,204 31,208 31,123 32,100 35,380 31,333 33,476 31,164

hsqldb

Time (s) 7.8 8.6 19.2 11.7 53.2 61.1 8.1 9.1 9.1 17.3 12.3
#cast-may-fail 775 453 677 371 385 357 465 687 374 671 370
#poly-call 1,104 839 965 775 760 759 843 1,012 805 868 771
#reach-methods 6,604 6,311 6,468 6,243 6,253 6,226 6,311 6,498 6,256 6,440 6,227
#call-edge 36,324 31,237 34,312 30,366 30,375 30,290 31,260 34,498 30,499 32,640 30,330

jython

Time (s) 9.3 13.3 103.6 78.1 - - 11.8 17.0 17.1 4,322.3 3,996.9
#cast-may-fail 1,284 908 1,178 812 - - 920 1,191 815 1,176 811
#poly-call 1,604 1,338 1,455 1,262 - - 1,342 1,507 1,297 1,366 1,260
#reach-methods 8,852 8,548 8,714 8,453 - - 8,548 8,741 8,464 8,688 8,437
#call-edge 52,026 44,891 49,603 43,588 - - 44,895 49,809 43,847 47,378 43,654

luindex

Time (s) 8.2 9.3 22.7 13.1 49.0 54.8 9.6 10.0 9.5 16.4 14.2
#cast-may-fail 811 468 709 375 389 361 480 719 379 702 375
#poly-call 1,142 869 992 802 787 786 873 1,046 831 895 798
#reach-methods 6,924 6,635 6,789 6,568 6,577 6,550 6,635 6,818 6,580 6,760 6,551
#call-edge 37,493 32,349 35,454 31,460 31,467 31,382 32,372 35,643 31,596 33,775 31,430

lusearch

Time (s) 8.3 10.1 26.0 14.2 71.8 70.0 8.6 10.2 10.6 20.4 15.3
#cast-may-fail 917 517 811 417 399 371 529 823 420 772 386
#poly-call 1,334 1,055 1,181 983 966 965 1,059 1,233 1,010 1,078 977
#reach-methods 7,596 7,287 7,463 7,212 7,221 7,194 7,287 7,492 7,224 7,431 7,195
#call-edge 40,787 35,267 38,706 34,328 34,333 34,248 35,290 38,893 34,454 36,878 34,288

pmd

Time (s) 8.4 10.5 27.8 14.9 78.6 77.0 10.2 13.0 11.6 24.5 16.5
#cast-may-fail 1,260 822 1,149 727 744 712 834 1,161 730 1,143 725
#poly-call 1,204 912 1,062 844 826 825 916 1,109 872 941 835
#reach-methods 8,337 8,021 8,198 7,955 7,955 7,928 8,021 8,229 7,968 8,168 7,929
#call-edge 44,572 38,754 42,490 37,873 37,870 37,778 38,777 42,690 38,016 40,624 37,821

xalan

Time (s) 6.6 8.2 19.6 12.4 54.3 56.6 9.1 10.2 9.3 15.0 13.5
#cast-may-fail 779 461 676 374 388 360 473 686 377 670 373
#poly-call 1,106 841 964 774 759 758 845 1,010 803 867 770
#reach-methods 6,619 6,332 6,483 6,265 6,274 6,247 6,332 6,513 6,278 6,454 6,248
#call-edge 36,019 30,979 34,008 30,109 30,116 30,031 31,002 34,190 30,238 32,338 30,071

is always more precise than k-obj (k-type) analysis. Table III
and Table IV compare precision metrics in 2 groups: object-
sensitive group (GenO, 1-obj, Gen+1-obj, 2-obj) and type-
sensitive group (GenT, 1-type, Gen+1-type, 2-type). Column
4-8 in both tables show results for object-sensitive group, and
results of type-sensitive group are given in Column 9-13 of
both tables.

Under the given 90 minutes budget, 2-obj analysis fails to
process five benchmarks: bloat, jython, antlr4, byte-
buddy, and modelmaper. Both 1-obj and 2-type analyses
timeout on antlr4. Those timeout cases are outlined with “-”
in both of tables.

Object-Sensitivity Group. GenO, where only generic objects
and methods are analyzed context-sensitively, is noticeably
more precise than 1-obj for all metrics across all benchmarks.
2-obj is more precise than GenO in those benchmarks that it
is able to finish running: for #cast-may-fail, #poly-call, #reach-
methods, and #call-edge, the ratio of the number reported by
GenO against that reported by 2-obj is 120.34%, 109.65%,
101.14%, and 103.53%, respectively. Gen+1-obj successfully
analyzes all benchmarks without timeouts, and it achieves
slightly better precision than 2-obj, reporting 97.87%, 101.85%,
99.92%, and 100.10% of the number reported by 2-obj for the
4 metrics, respectively.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GENERIC SENSITIVITY: GENERICS-GUIDED CONTEXT SENSITIVITY FOR POINTER ANALYSIS 1155

TABLE IV
EFFICIENCY AND PRECISION METRICS OF DIFFERENT ANALYSES ON APPLICATIONS

Program Metrics CI
obj type

GenO 1-obj Gen+1-obj 2-obj Gen+2-obj GenT 1-type Gen+1-type 2-type Gen+2-type

antlr4

Time (s) 23.1 45.1 - 3,566.9 - - 36.9 154.8 165.6 - -
#cast-may-fail 3,608 2,779 - 2,156 - - 2,899 3,245 2,364 - -
#poly-call 3,507 2,888 - 2,695 - - 2,980 3,359 2,813 - -
#reach-methods 21,029 20,545 - 20,430 - - 20,548 20,900 20,453 - -
#call-edge 166,399 152,186 - 149,833 - - 152,479 163,145 150,304 - -

byte-buddy

Time (s) 14.0 21.4 1,197.3 202.1 - - 18.0 63.0 30.2 2,393.1 752.7
#cast-may-fail 1,715 1,095 1,582 829 - - 1,119 1,599 856 1,549 798
#poly-call 3,527 3,084 3,357 2,921 - - 3,096 3,435 2,992 3,220 2,853
#reach-methods 11,773 11,305 11,646 11,121 - - 11,309 11,685 11,155 11,606 11,072
#call-edge 70,635 58,776 67,552 55,848 - - 59,443 67,866 56,511 64,337 55,459

findbugs

Time (s) 9.5 11.8 65.4 15.4 193.8 148.1 11.9 16.0 11.7 47.8 18.8
#cast-may-fail 1,223 734 1,112 566 600 547 757 1,125 578 1,105 572
#poly-call 1,626 1,229 1,414 1,144 1,109 1,107 1,234 1,525 1,182 1,277 1,139
#reach-methods 9,242 8,852 9,082 8,685 8,693 8,662 8,852 9,113 8,703 9,024 8,673
#call-edge 51,887 42,600 48,520 40,639 40,636 40,476 42,641 48,789 40,842 45,582 40,642

javassist

Time (s) 6.5 8.3 16.5 11.8 50.5 59.2 7.6 8.4 8.7 14.3 12.3
#cast-may-fail 765 448 671 370 384 356 460 681 373 665 369
#poly-call 1,089 824 956 766 751 750 828 1,003 796 859 762
#reach-methods 6,519 6,229 6,381 6,159 6,168 6,141 6,229 6,413 6,174 6,352 6,142
#call-edge 35,379 30,328 33,396 29,486 29,493 29,408 30,351 33,580 29,617 31,726 29,448

jflex

Time (s) 10.4 12.2 116.8 35.0 1,445.8 1,411.0 11.9 23.2 16.8 326.1 135.0
#cast-may-fail 1,545 1,087 1,414 907 920 881 1,131 1,443 923 1,416 909
#poly-call 2,004 1,631 1,854 1,547 1,532 1,507 1,673 1,923 1,602 1,783 1,563
#reach-methods 10,708 10,356 10,544 10,265 10,247 10,206 10,364 10,577 10,286 10,522 10,254
#call-edge 56,310 49,154 53,737 47,763 47,285 47,129 49,390 54,204 48,110 53,181 47,831

junit

Time (s) 6.8 13.1 36.8 17.5 73.2 79.2 12.9 12.1 14.6 39.0 22.8
#cast-may-fail 962 633 862 473 502 452 648 875 489 850 470
#poly-call 1,303 1,016 1,180 930 925 909 1,020 1,233 960 1,094 921
#reach-methods 8,008 7,771 7,891 7,630 7,639 7,610 7,773 7,910 7,649 7,843 7,613
#call-edge 41,715 36,473 39,663 34,867 34,905 34,764 36,530 39,839 35,030 38,021 34,817

modelmapper

Time (s) 13.0 19.8 899.5 158.4 - - 17.7 51.8 27.0 3,058.6 843.6
#cast-may-fail 1,678 1,094 1,546 821 - - 1,119 1,563 847 1,513 789
#poly-call 3,529 3,102 3,364 2,933 - - 3,114 3,444 3,010 3,229 2,864
#reach-methods 11,732 11,283 11,605 11,073 - - 11,287 11,644 11,107 11,565 11,018
#call-edge 69,389 58,014 66,347 55,040 - - 58,684 66,669 55,716 63,237 54,633

Type-Sensitivity Group. Gen+1-type is by far the most pre-
cise variant in the group, reporting 59.1%, 92.7%, 97.3%, and
92.1% of the number reported by 2-type for the above 4 metrics,
respectively. Surprisingly, GenT also achieves better precision
than 2-type, reporting 72.98%, 96.81%, 98.27%, and 94.90% of
the number reported by 2-type, respectively. This may suggest
again the benefit of applying generic instantiation locations
to distinguish contexts, especially for the cases where coarse
context elements (like types) do not work effectively.

The context elements of type-sensitivity in Table III and
Table IV are types of receiver objects (we use “bad strategy”
to represent this strategy). To validate the robustness of generic
sensitivity on different strategies of type-sensitivity [18], Fig. 9
shows the precision and efficiency of different analyses against
1-type-sensitivity in Table III and Table IV. We use k-typeG
to represent k-type-sensitivity, the context elements of which
are types that contain the methods which allocate receiver
objects (we use “good strategy” to represent this strategy).
The precision on all metrics of the two strategies are similar,
and generic sensitivity can significantly enhance the precision
of both strategies on average.

E. RQ3. Efficiency

As shown in Table III and Table IV, 2-obj timeouts for 5
benchmarks: bloat, jython, antlr4, byte-buddy and
modelmapper. Comparing Gen+1-obj to 1-obj, Gen+1-obj
achieves an average speedup of 1.8 ×, despite the fact that it

Fig. 9. Efficiency and precision metrics of different strategies of type
sensitivity. Lower is better along all axes.

is simultaneously much more precise. Compared to 2-obj with
similar precision, Gen+1-obj achieves a speedup of 62 × for
chart, with an average speedup of 12.6 × for the 13 appli-
cations that 2-obj run to completion. Similarly, Gen+1-type
also achieves noticeably better efficiency than 1-type, with an
average efficiency improvement of 20%. As Fig. 9 shows, com-
paring with the “bad strategy”, the “good strategy” is slightly
slower when k=1 on average, and much faster under k=2.
And generic sensitivity can generally improve the efficiency of
both strategies.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

1156 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

Fig. 10. Precision(#reach-methods)/efficiency spectrum for DACAPO benchmarks. Lower is better along both axes.

Although Gen+k-obj (Gen+k-type) introduces extra context
elements to k-obj (k-type) analysis, the efficiency gain brought
by more precise results can often compensate for the cost of
introduced extra context elements. As an evidence, the two
generic sensitive approaches Gen+1-obj and Gen+1-type out-
performs 1-obj and 1-type, respectively.

F. RQ4. Precision and Efficiency Trade-Off

Fig. 10 depicts the efficiency and precision spectrum for an
array of 11 pointer analysis variants. The figure plots precision

in #reach-methods metric (with other precision metrics showing
similar results) against analysis time over a set of 9 benchmarks
in DACAPO. The other 2 benchmarks, bloat and jython, are
not included in the graph since both 2-obj analysis and Gen+2-
obj analysis fail to analyze them.

In Fig. 10, lower numbers are better on both axes. Hence,
analyses in the bottom left corner are superior in both pre-
cision and efficiency. As shown in the graph, the 3 variants
Gen+1-obj, Gen+1-type, and Gen+2-type achieve overall best
trade-offs between precision and efficiency. The most precise

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GENERIC SENSITIVITY: GENERICS-GUIDED CONTEXT SENSITIVITY FOR POINTER ANALYSIS 1157

TABLE V
EFFICIENCY AND PRECISION METRICS OF DIFFERENT ANALYSES COMBINED WITH ZIPPER AND ZIPPER-E ON DaCapo BENCHMARKS

Program Metrics 1-objZ Gen+1-objZ 2-objZ Gen+2-objZ 1-objZE Gen+1-objZE 2-objZE Gen+2-objZE

antlr

Time (s) 8.3 9.8 27.4 35.6 7.7 11.1 9.5 12.0
#cast-may-fail 777 687 708 681 794 723 728 722
#poly-call 1,393 1,262 1,269 1,255 1,433 1,306 1,319 1,302
#reach-methods 7,212 7,154 7,176 7,135 7,248 7,201 7,226 7,198
#call-edge 40,395 38,118 38,644 38,040 40,793 38,857 39,412 38,843

bloat

Time (s) 89.0 101.3 - - 19.5 29.7 25.2 30.6
#cast-may-fail 1,936 1,690 - - 1,955 1,739 1,755 1,737
#poly-call 2,033 1,708 - - 2,075 1,776 1,784 1,768
#reach-methods 9,093 9,023 - - 9,127 9,066 9,091 9,063
#call-edge 64,599 61,174 - - 65,107 62,134 62,369 62,015

chart

Time (s) 27.7 44.8 247.1 229.0 20.4 37.5 42.3 67.0
#cast-may-fail 1,732 1,500 1,525 1,472 1,746 1,538 1,551 1,537
#poly-call 1,898 1,679 1,681 1,669 1,921 1,714 1,745 1,710
#reach-methods 11,674 11,570 11,607 11,534 11,689 11,600 11,637 11,600
#call-edge 62,902 60,879 61,229 60,164 63,313 61,431 61,779 61,427

eclipse

Time (s) 10.7 18.6 44.6 54.6 9.7 16.4 12.0 18.0
#cast-may-fail 979 882 899 872 995 917 918 912
#poly-call 1,148 1,030 1,037 1,023 1,188 1,074 1,085 1,068
#reach-methods 7,612 7,552 7,574 7,533 7,647 7,598 7,623 7,595
#call-edge 42,401 40,159 40,700 40,051 42,826 41,296 41,861 41,261

fop

Time (s) 8.3 14.3 27.2 35.1 8.1 12.2 8.7 12.4
#cast-may-fail 756 667 687 661 773 702 707 701
#poly-call 1,024 884 893 879 1,056 920 933 916
#reach-methods 6,734 6,669 6,691 6,650 6,769 6,715 6,740 6,712
#call-edge 35,518 33,356 33,812 33,282 35,905 34,329 34,553 34,315

hsqldb

Time (s) 8.8 11.3 25.7 31.8 7.7 11.6 8.5 11.5
#cast-may-fail 724 634 655 628 741 670 675 669
#poly-call 991 860 869 855 1,024 897 910 893
#reach-methods 6,493 6,434 6,457 6,416 6,528 6,480 6,506 6,478
#call-edge 34,627 32,493 32,936 32,421 35,014 33,201 33,669 33,189

jython

Time (s) 45.4 51.5 - - 12.4 15.6 15.1 20.5
#cast-may-fail 1,234 1,129 - - 1,241 1,159 1,163 1,157
#poly-call 1,503 1,345 - - 1,518 1,366 1,375 1,358
#reach-methods 8,750 8,674 - - 8,762 8,700 8,726 8,697
#call-edge 50,092 46,605 - - 50,504 48,287 49,310 48,264

luindex

Time (s) 9.7 13.0 26.0 32.3 8.2 12.4 8.7 12.1
#cast-may-fail 755 661 682 655 772 697 702 696
#poly-call 1,018 887 896 882 1,050 923 936 919
#reach-methods 6,813 6,755 6,777 6,736 6,848 6,801 6,826 6,798
#call-edge 35,763 33,618 34,068 33,544 36,150 34,332 34,807 34,318

lusearch

Time (s) 11.2 14.0 34.7 42.3 9.1 13.7 12.2 16.6
#cast-may-fail 858 754 763 736 876 791 786 780
#poly-call 1,210 1,075 1,084 1,070 1,242 1,111 1,124 1,107
#reach-methods 7,485 7,426 7,448 7,407 7,520 7,472 7,497 7,469
#call-edge 39,023 36,682 37,184 36,608 39,411 37,425 37,952 37,411

pmd

Time (s) 11.5 15.6 37.7 46.9 10.5 15.1 17.8 21.1
#cast-may-fail 1,196 1,049 1,073 1,043 1,210 1,083 1,090 1,082
#poly-call 1,092 928 937 923 1,115 955 968 951
#reach-methods 8,225 8,162 8,184 8,143 8,251 8,199 8,224 8,196
#call-edge 42,815 40,264 40,781 40,190 42,935 40,748 41,292 40,734

xalan

Time (s) 9.1 12.0 25.1 30.1 7.8 11.3 8.8 11.3
#cast-may-fail 723 632 653 626 740 668 673 667
#poly-call 994 863 872 858 1,026 899 912 895
#reach-methods 6,508 6,450 6,472 6,431 6,543 6,496 6,521 6,493
#call-edge 34,323 32,199 32,635 32,125 34,709 32,904 33,365 32,890

analysis is Gen+2-obj. However, its efficiency is similar to 2-
obj and both are significantly slower than the other variants.
For #reach-methods, Gen+2-type achieves similar precision to
Gen+2-obj, with significant efficiency improvements. Let us
compare Gen+1-obj with 2-obj, Gen+1-obj is much faster and
it is also more precise than 2-obj for all benchmarks, except for
hsqldb. Between Gen+1-type and Gen+1-obj, Gen+1-type is
slightly faster for all benchmarks but incur significant precision
loss for luindex.

Generic sensitivity offers a good solution in balancing preci-
sion and efficiency. The three variants Gen+1-obj, Gen+1-type,
and Gen+2-type achieve overall best precision and efficiency
trade-offs.

G. RQ5. Comparing With Selective Context Sensitivity

Table V and Table VI compare precision and efficiency of
k-obj and Gen+k-obj with or without applying ZIPPER and

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

1158 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

TABLE VI
EFFICIENCY AND PRECISION METRICS OF DIFFERENT ANALYSES COMBINED WITH ZIPPER AND ZIPPER-E

Program Metrics 1-objZ Gen+1-objZ 2-objZ Gen+2-objZ 1-objZE Gen+1-objZE 2-objZE Gen+2-objZE

antlr4

Time (s) 829.8 1,516.3 - - 104.2 453.1 3,342.4 3,824.7
#cast-may-fail 3,240 3,025 - - 3,261 3,062 3,087 3,061
#poly-call 3,312 2,997 - - 3,353 3,062 3,111 3,062
#reach-methods 20,834 20,655 - - 20,853 20,731 20,793 20,730
#call-edge 160,391 156,775 - - 160,862 157,928 158,552 157,918

byte-buddy

Time (s) 227.2 452.2 - - 30.0 43.4 71.9 76.8
#cast-may-fail 1,630 1,416 - - 1,657 1,456 1,473 1,439
#poly-call 3,399 3,083 - - 3,427 3,149 3,164 3,139
#reach-methods 11,666 11,495 - - 11,684 11,574 11,623 11,569
#call-edge 67,953 62,197 - - 68,336 63,997 66,308 63,937

findbugs

Time (s) 16.0 23.8 55.1 69.0 12.0 15.8 17.7 24.2
#cast-may-fail 1,162 956 979 952 1,172 974 995 972
#poly-call 1,443 1,242 1,229 1,216 1,462 1,263 1,275 1,255
#reach-methods 9,109 8,996 9,018 8,975 9,120 9,021 9,051 9,019
#call-edge 48,855 44,845 45,050 44,707 49,188 45,609 45,923 45,559

javassist

Time (s) 8.0 11.8 22.3 28.7 8.6 10.1 10.3 12.9
#cast-may-fail 714 624 645 618 722 642 655 641
#poly-call 976 845 854 840 997 868 881 864
#reach-methods 6,408 6,349 6,371 6,330 6,427 6,379 6,404 6,376
#call-edge 33,682 31,557 31,993 31,483 34,035 32,203 32,679 32,189

jflex

Time (s) 23.5 33.3 207.2 185.8 12.5 20.2 20.3 27.1
#cast-may-fail 1,468 1,309 1,332 1,300 1,484 1,336 1,352 1,335
#poly-call 1,883 1,693 1,720 1,692 1,909 1,726 1,756 1,726
#reach-methods 10,575 10,462 10,498 10,445 10,593 10,504 10,531 10,503
#call-edge 54,146 52,335 52,663 51,837 54,554 52,852 53,140 52,848

junit

Time (s) 9.7 21.7 34.0 51.8 11.9 17.1 14.7 21.8
#cast-may-fail 911 799 818 789 924 824 839 821
#poly-call 1,200 1,019 1,032 1,010 1,230 1,055 1,064 1,047
#reach-methods 7,917 7,854 7,866 7,834 7,936 7,874 7,902 7,870
#call-edge 39,941 38,057 38,879 37,931 40,308 38,447 39,329 38,395

modelmapper

Time (s) 103.6 139.5 - - 29.2 43.8 54.1 77.5
#cast-may-fail 1,595 1,396 - - 1,620 1,436 1,454 1,419
#poly-call 3,406 3,104 - - 3,433 3,173 3,186 3,163
#reach-methods 11,626 11,474 - - 11,643 11,552 11,598 11,547
#call-edge 66,764 61,353 - - 67,145 63,161 65,279 63,101

ZIPPER-E (two state-of-the-art selective context-sensitivity ap-
proaches) on our benchmarks. Consistent with the conclusion in
[25], [26], both of ZIPPER and ZIPPER-E can achieve substantial
speedup with slight loss of precision than standard k-object-
sensitivity. Generic Sensitivity and selective context-sensitivity
approaches complement each other, as they are able to further
enhance the precision and efficiency when combined.

For examples, ZIPPER-E can significantly improve the effi-
ciency of generic-sensitivity, i.e., Gen+2-objZE can analysis
all benchmarks under the given time budge while Gen+2-
obj fail to analysis five benchmarks: bloat, jython,
antlr4, byte-buddy and modelmapper. Comparing
with 1-objZ, Gen+1-objZ is significant more precise: for
#cast-may-fail, #poly-call, #reach-methods, and #call-edge, the
ratio of the number reported by Gen+1-objZ against that
reported by 1-objZ is 88.03%, 87.94%, 99.06%, and 94.21%
respectively. The conclusion is similar for ZIPPER-E, the ratio of
the number reported by Gen+1-objZE against that reported
by 1-objZE is 89.83%, 88.72%, 99.26%, and 95.30%, respec-
tively. Comparing with 2-objZ, Gen+1-objZ is already able
to achieve an average speedup of 2.8× with slight improvement
of precision, the ratio of the number reported by Gen+1-objZ
against that reported by 2-objZ is 97.54%, 99.23%, 99.70%,
and 98.79% for #cast-may-fail, #poly-call, #reach-methods, and
#call-edge respectively.

Fig. 11. Precision of k-generic sensitivity.

H. RQ6. Precision/Efficiency of K-Generic Sensitivity

Same with other variants of context sensitivity, the preci-
sion will increase as the depth of context increases. Fig. 11
compares the precision of 1-obj, Gen+1-obj, 2-Gen+1-obj and
3-Gen+1-obj. The four metrics of precision are normalized
to 1-obj. Compared to 1-obj, Gen+1-obj, 2-Gen+1-obj and
3-Gen+1-obj are noticeably more precise. For #cast-may-fail
metric, 2-Gen+1-obj achieves slightly better precision than

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GENERIC SENSITIVITY: GENERICS-GUIDED CONTEXT SENSITIVITY FOR POINTER ANALYSIS 1159

Fig. 12. The precision of GenO with local analysis against GenO without local analysis.

Gen+1-obj. For other metrics, the precision improvements are
insignificant. For chart, 3-Gen+1-obj achieves slightly bet-
ter precision than 2-Gen+1-obj on #cast-may-fail and #call-
edge metrics. For other benchmarks, both of 3-Gen+1-obj and
2-Gen+1-obj have the same precision on all metrics.

Fig. 13 compares analysis times for 1-obj, Gen+1-obj, 2-
Gen+1-obj and 3-Gen+1-obj. As shown in Fig. 13, compared
to Gen+1-obj, 2-Gen+1-obj and 3-Gen+1-obj slow down
0.85× and 6.18× on average, respectively. Still, 2-Gen+1-obj
is still faster than 1-obj on average. If we disable the limitation
of the depth of generic context, it will timeout on all bench-
marks as other context-sensitivity approaches.

I. RQ7. Performance of Local Analysis

Section III-A introduces a local analysis that can detect ac-
tual type parameters. Additionally, we defined a degradation
strategy that employs pseudo types as actual type parameters in
instances where the local analysis is deemed invalid. However,
this strategy may influence the precision. Taking Fig. 1 as an
example, without local analysis, we cannot infer the actual
type parameters of Node at line 17 and use T17 to replace
them. So, the contexts of the constructor of class Node will
be [V �→ T17] rather than [V �→O1] and [V �→O2] where we
omit the context mapping of formal type parameter K. Fig. 12
shows the precision of GenO with or without local analysis for
#cast-may-fail, #poly-call, #reach-methods, and #call-edge. On
average, the ratio of the number reported by GenO with local
analysis against that reported by GenO without local analysis
is 93.31%, 96.78%, 99.26%, 98.06%, respectively. Meantime,
both strategies take similar time for all benchmarks.

VI. RELATED WORK

Context-sensitive pointer analysis for Java has been exten-
sively studied in the literature. There are three mainstream vari-
ants of context sensitivity: k-object sensitivity, k-type sensitivity
and k-call-site sensitivity. In addition to the above three vari-
ants, the work [20] proposes a hybrid approach which applies
object sensitivity to instance method invocations and call-site

Fig. 13. Efficiency of k-generic sensitivity. The triangle represents means.

sensitivity to static method invocations. The hybrid approach
is superior to pure object-sensitivity since static methods don’t
have receiver objects. Jonas and Welf [38] use the points-to
set of receiver object to approximate a context [38]. In [39],
the cartesian product of the points-to sets of all arguments
(including this) are used to symbolically represent a context.
Our generic customization scheme can be adapted to the above
context-sensitive variants as well.

Selective context-sensitivity has gained much attention re-
cently since it may offer a better trade-off between preci-
sion and efficiency, where methods can be analyzed with
different context elements and depths. Researchers have ap-
plied manually-selected metrics and heuristics [40], [41], [42],
or learning-based approaches [43], [44], [45], [46], [47] to
selectively analyze a subset of methods context-sensitivity.
SCALER [21] determines whether to analyze a method context-
sensitively or not based on an estimation of its potential memory
consumption. ZIPPER [25] introduces three kinds of value-flow
patterns to identify precision-critical methods, and those pat-
terns can be computed by solving a graph reachability problem
on a precision flow graph. As a result, most precision can
be preserved while achieving noticeable speedup. The later

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

1160 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

ZIPPER-E [26], as a new variant of Zipper, is able to signif-
icantly accelerate Zipper with comparable precision. EAGLE

[30] performs a CFL-reachability-based pre-analysis to en-
able selective context-sensitivity in k-obj, while guaranteeing
precision. TURNER [48] finds a sweet spot between ZIPPER

and EAGLE, which enables k-obj analysis to run significantly
faster than EAGLE while achieve better precision than ZIPPER.
CONCH [48] finds context-dependent objects, avoiding con-
texts bloating. BATON [31] proposes a Unit-Relay framework
by collectively integrating different context selectors. Instead
of selecting which methods to be context-sensitive analyzed,
BEAN [49] makes k-obj sensitive analysis more precise by
skipping those unhelpful context elements. In [32], Tan et al.
apply a pre-analysis to selectively apply type-based abstrac-
tions to heap objects, provided that such approximation does
not affect the precision of type-based clients, e.g., call graph
construction. Compared to the above selective sensitive ap-
proaches, we propose a context customization scheme targeting
generics and our approach can be applied together with the
above optimization techniques, to further improve precision
or efficiency, or both. Generic sensitivity can also be applied
with call-site sensitivity by augmenting contexts with call-sites
and propagating mappings from type variables to call-sites
along type variables, similar to the methodology in the paper.
OBJ2CFA introduces an innovative context-tunneled k-call-site
sensitive analysis which may outperform object sensitivity in
a general k-limiting setting by selecting critical call-sites as
contexts. Generic sensitivity and OBJ2CFA may complement
each other, akin to combining generic sensitivity with Zipper.
Recently, the CUT-SHORTCUT approach [50] has made signifi-
cant strides in accelerating context-sensitivity-like pointer anal-
ysis without employing context sensitivity. This achievement is
accomplished by leveraging various patterns within its graph
manipulation principle. In light of these advancements, we an-
ticipate that our generic-sensitivity approach can provide new
insights into the identification of novel generics-related patterns
within this principle. This, in turn, can facilitate the exploration
of new trade-offs between precision and efficiency.

There have been numerous approaches leveraging efficient
data structure implementation to scale context-sensitive pointer
analysis, e.g., using bit vectors or bit sets [51], [52], us-
ing binary decision diagrams (BDDs) [53], [54], [55], using
geometric encoding techniques [56], or graph systems [57].
The work [58], [59] investigated on how to manually model
semantics of data structures, to effectively speed up an analysis
by omitting their complicated implementation details. Com-
pared to the above approaches, we target a different problem
on how to effectively analyze generics in a context-sensitive
manner and our approach can also benefit from the above
optimization techniques.

VII. CONCLUSION

We introduce generic-sensitive pointer analysis, a new con-
text customization scheme designed for generics. To the best of
our knowledge, this is the first context-sensitive pointer analysis
targeting generics. Our scheme is built upon the insight that

generic instantiation locations can serve as crucial context ele-
ments for effectively distinguishing contexts in Java programs.
Leveraging this observation, we have established formal rules
and outlined the application of generic customization to two
prominent context-sensitive variants: object sensitivity and type
sensitivity. Extensive experimental evaluations have been con-
ducted, demonstrating the effectiveness of generic sensitivity
in improving both traditional and selective context-sensitivity
approaches. Our results highlight the potential for a new trade-
off between efficiency and precision in Java pointer analysis,
and we expect this work to pave the way for further exploration
of generics for more precise pointer analysis.

ACKNOWLEDGMENT

The authors thank all anonymous reviewers for their
valuable inputs.

REFERENCES

[1] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, “TriggerScope: Towards detecting logic bombs in Android
applications,” in Proc. IEEE Symp. Secur. Privacy (SP), Piscataway, NJ,
USA: IEEE Press, 2016, pp. 377–396.

[2] L. Li, C. Cifuentes, and N. Keynes, “Practical and effective symbolic
analysis for buffer overflow detection,” in Proc. 18th ACM SIGSOFT
Int. Symp. Found. Softw. Eng. (FSE ’10), New York, NY, USA: ACM,
2010, pp. 317–326, doi: 10.1145/1882291.1882338.

[3] C. Liu et al., “Detecting tensorflow program bugs in real-world industrial
environment,” in Proc. 36th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), 2021, pp. 55–66.

[4] Y. Sui, S. Ye, J. Xue, and J. Zhang, “Making context-sensitive inclusion-
based pointer analysis practical for compilers using parameterised
summarisation,” Softw., Pract. Experience, vol. 44, no. 12, pp. 1485–
1510, 2014.

[5] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard, “Information flow analysis of Android applications in droidsafe,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2015, vol. 15, no. 201, p. 110.

[6] S. Arzt et al., “FlowDroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for Android apps,” in
Proc. 35th ACM SIGPLAN Conf. Program. Lang. Des. Implementation
(PLDI ’14), New York, NY, USA: ACM, 2014, pp. 259–269, doi:
10.1145/2594291.2594299.

[7] D. He et al., “Performance-boosting sparsification of the IFDS algorithm
with applications to taint analysis,” in Proc. 34th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), 2019, pp. 267–279.

[8] N. Grech and Y. Smaragdakis, “P/Taint: Unified points-to and taint
analysis,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, pp. 1–
28, 2017.

[9] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in
Proc. ACM SIGPLAN-SIGSOFT Workshop Program Anal. Softw. Tools
Eng., 2001, pp. 54–61.

[10] L. Li, C. Cifuentes, and N. Keynes, “Boosting the performance
of flow-sensitive points-to analysis using value flow,” in Proc.
19th ACM SIGSOFT Symp. 13th Eur. Conf. Found. Softw. Eng.
(ESEC/FSE ’11), New York, NY, USA: ACM, 2011, pp. 343–353,
doi: 10.1145/2025113.2025160.

[11] H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang, “Level by level: Making
flow-and context-sensitive pointer analysis scalable for millions of lines
of code,” in Proc. 8th Annu. IEEE/ACM Int. Symp. Code Gener. Optim.,
2010, pp. 218–229.

[12] Y. Smaragdakis and G. Balatsouras, “Pointer analysis,” Found. Trends
Program. Lang., vol. 2, no. 1, pp. 1–69, 2015.

[13] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav, “Alias anal-
ysis for object-oriented programs,” in Aliasing in Object-Oriented Pro-
gramming. Types, Analysis and Verification, Berlin, Germany: Springer-
Verlag, 2013, pp. 196–232.

[14] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to and side-effect analyses for Java,” in Proc. ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 2002, pp. 1–11.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/1882291.1882338
http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2025113.2025160

LI et al.: GENERIC SENSITIVITY: GENERICS-GUIDED CONTEXT SENSITIVITY FOR POINTER ANALYSIS 1161

[15] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for Java,” ACM Trans. Softw. Eng.
Methodol. (TOSEM), vol. 14, no. 1, pp. 1–41, 2005.

[16] M. Sharir et al., Two Approaches to Interprocedural Data Flow Analysis.
New York Univ., Englewood Cliffs, NJ, USA: Prentice-Hall, 1978.

[17] O. G. Shivers, Control-Flow Analysis of Higher-Order Languages or
Taming Lambda. Pittsburgh, PA, USA: Carnegie Mellon Univ., 1991.

[18] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your contexts
well: Understanding object-sensitivity,” in Proc. 38th Annu. ACM
SIGPLAN-SIGACT Symp. Princ. Program. Lang., 2011, pp. 17–30.

[19] L. Li, C. Cifuentes, and N. Keynes, “Precise and scalable context-
sensitive pointer analysis via value flow graph,” ACM SIGPLAN Notices,
vol. 48, no. 11, pp. 85–96, 2013.

[20] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for points-
to analysis,” ACM SIGPLAN Notices, vol. 48, no. 6, pp. 423–434, 2013.

[21] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Scalability-first pointer
analysis with self-tuning context-sensitivity,” in Proc. 26th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2018,
pp. 129–140.

[22] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining billions
of AST nodes to study actual and potential usage of Java language
features,” in Proc. 36th Int. Conf. Softw. Eng. (ICSE), New York, NY,
USA: ACM, 2014, pp. 779–790, doi: 10.1145/2568225.2568295.

[23] “Wala: T.J. Watson libraries for analysis.” IBM. Accessed: May 2023.
[Online]. Available: http://wala.sourceforge.net

[24] S. M. Blackburn et al., “The DaCapo benchmarks: Java benchmarking
development and analysis,” in Proc. 21st Annu. ACM SIGPLAN Conf.
Object-Oriented Program. Syst., Lang., Appl., 2006, pp. 169–190.

[25] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Precision-guided context
sensitivity for pointer analysis,” Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, pp. 1–29, 2018.

[26] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “A principled approach to
selective context sensitivity for pointer analysis,” ACM Trans. Program.
Lang. Syst., vol. 42, no. 2, May 2020, doi: 10.1145/3381915.

[27] H. Li et al. “Generic sensitivity: Customizing context-sensitive
pointer analysis for generics.” Figshare. Accessed: May 2023.
[Online]. Available: https://figshare.com/articles/software/Generic_
Sensitivity_Customizing_Context-Sensitive_Pointer_Analysis_for_
Generics/20486556

[28] O. Lhoták and L. Hendren, “Context-sensitive points-to analysis: Is it
worth it?” in Proc. Int. Conf. Compiler Construction, Berlin, Germany:
Springer-Verlag, 2006, pp. 47–64.

[29] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification
of sophisticated points-to analyses,” in Proc. 24th ACM SIGPLAN Conf.
Object Oriented Program. Syst. Lang. Appl., 2009, pp. 243–262.

[30] J. Lu and J. Xue, “Precision-preserving yet fast object-sensitive pointer
analysis with partial context sensitivity,” Proc. ACM Program. Lang.,
vol. 3, no. OOPSLA, pp. 1–29, 2019.

[31] T. Tan, Y. Li, X. Ma, C. Xu, and Y. Smaragdakis, “Making pointer
analysis more precise by unleashing the power of selective context
sensitivity,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA, pp. 1–
27, 2021.

[32] T. Tan, Y. Li, and J. Xue, “Efficient and precise points-to analysis:
Modeling the heap by merging equivalent automata,” in Proc. 38th
ACM SIGPLAN Conf. Program. Lang. Des. Implementation, 2017,
pp. 278–291.

[33] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller, “Efficiently
refactoring Java applications to use generic libraries,” in Proc. Eur. Conf.
Object-Oriented Program., New York, NY, USA: Springer-Verlag, 2005,
pp. 71–96.

[34] W.-N. Chin, F. Craciun, S.-C. Khoo, and C. Popeea, “A flow-based
approach for variant parametric types,” ACM SIGPLAN Notices, vol. 41,
no. 10, pp. 273–290, 2006.

[35] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban, and B. De
Sutter, “Refactoring using type constraints,” ACM Trans. Program. Lang.
Syst. (TOPLAS), vol. 33, no. 3, pp. 1–47, 2011.

[36] T. Tan and Y. Li, “Tai-e: A developer-friendly static analysis framework
for Java by harnessing the good designs of classics,” in Proc. 32nd ACM
SIGSOFT Int. Symp. Softw. Testing Anal. (ISSTA), New York, NY, USA:
ACM, 2023, doi: 10.1145/3597926.3598120.

[37] L. O. Andersen, “Program analysis and specialization for the C pro-
gramming language,” Ph.D. dissertation, DIKU, Univ. Copenhagen,
Copenhagen, Denmark, 1994.

[38] J. Lundberg and W. Löwe, “Points-to analysis: A fine-grained evalua-
tion.” J. Universal Comput. Sci., vol. 18, no. 20, pp. 2851–2878, 2012.

[39] R. Padhye and U. P. Khedker, “Interprocedural data flow analysis in
soot using value contexts,” in Proc. 2nd ACM SIGPLAN Int. Workshop
State Art Java Program Anal., 2013, pp. 31–36.

[40] B. Hassanshahi, R. K. Ramesh, P. Krishnan, B. Scholz, and Y. Lu,
“An efficient tunable selective points-to analysis for large codebases,”
in Proc. 6th ACM SIGPLAN Int. Workshop State Art Program Anal.,
2017, pp. 13–18.

[41] S. Wei and B. G. Ryder, “Adaptive context-sensitive analysis for
JavaScript,” in Proc. 29th Eur. Conf. Object-Oriented Program.
(ECOOP), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Berlin,
Germany: Springer-Verlag, 2015, pp. 712–734.

[42] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective analy-
sis: Context-sensitivity, across the board,” in Proc. 35th ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 2014, pp. 485–495.

[43] S. Jeong, M. Jeon, S. Cha, and H. Oh, “Data-driven context-sensitivity
for points-to analysis,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
pp. 1–28, 2017.

[44] M. Jeon, S. Jeong, and H. Oh, “Precise and scalable points-to analysis
via data-driven context tunneling,” Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, pp. 1–29, 2018.

[45] M. Jeon, S. Jeong, S. Cha, and H. Oh, “A machine-learning algorithm
with disjunctive model for data-driven program analysis,” ACM Trans.
Program. Lang. Syst., vol. 41, no. 2, Jun. 2019, doi: 10.1145/3293607.

[46] M. Jeon, M. Lee, and H. Oh, “Learning graph-based heuristics for
pointer analysis without handcrafting application-specific features,”
Proc. ACM Program. Lang., vol. 4, no. OOPSLA, pp. 1–30, 2020.

[47] M. Jeon and H. Oh, “Return of CFA: Call-site sensitivity can be superior
to object sensitivity even for object-oriented programs,” Proc. ACM
Program. Lang., vol. 6, no. POPL, pp. 1–29, 2022.

[48] D. He, J. Lu, and J. Xue, “Context debloating for object-sensitive pointer
analysis,” in Proc. 36th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Piscataway, NJ, USA: IEEE Press, 2021, pp. 79–91.

[49] T. Tan, Y. Li, and J. Xue, “Making k-object-sensitive pointer analysis
more precise with still k-limiting,” in Proc. Int. Static Anal. Symp.,
New York, NY, USA: Association for Computing Machinery, 2016,
pp. 489–510.

[50] W. Ma, S. Yang, T. Tan, X. Ma, C. Xu, and Y. Li, “Context sensitivity
without contexts: A cut-shortcut approach to fast and precise pointer
analysis,” Proc. ACM Program. Lang., vol. 7, no. PLDI, Jun. 2023, doi:
10.1145/3591242.

[51] M. Barbar and Y. Sui, “Compacting points-to sets through ob-
ject clustering,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA,
pp. 1–27, 2021.

[52] O. Lhoták and L. Hendren, “Scaling Java points-to analysis using
SPARK,” in Proc. Int. Conf. Compiler Construction, Berlin, Germany:
Springer-Verlag, 2003, pp. 153–169.

[53] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams,” in Proc. ACM SIGPLAN Conf.
Program. Lang. Des. Implementation, 2004, pp. 131–144.

[54] O. Lhoták, S. Curial, and J. N. Amaral, “Using ZBDDs in points-to
analysis,” in Proc. Int. Workshop Lang. Compilers Parallel Comput.,
Berlin, Germany: Springer-Verlag, 2007, pp. 338–352.

[55] O. Lhoták, S. Curial, and J. N. Amaral, “Using XBDDs and ZBDDs in
points-to analysis,” Softw., Pract. Experience, vol. 39, no. 2, pp. 163–
188, 2009.

[56] X. Xiao and C. Zhang, “Geometric encoding: Forging the high perfor-
mance context sensitive points-to analysis for Java,” in Proc. Int. Symp.
Softw. Testing Anal., 2011, pp. 188–198.

[57] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. A. Sani, “Graspan:
A single-machine disk-based graph system for interprocedural static
analyses of large-scale systems code,” in Proc. 22nd Int. Conf. Archit.
Support Program. Lang. Oper. Syst., (ASPLOS ’17), New York, NY,
USA: ACM, 2017, pp. 389–404, doi: 10.1145/3037697.3037744.

[58] P. Fegade and C. Wimmer, “Scalable pointer analysis of data struc-
tures using semantic models,” in Proc. 29th Int. Conf. Compiler Con-
struction (CC), New York, NY, USA: ACM, 2020, pp. 39–50, doi:
10.1145/3377555.3377885.

[59] A. Antoniadis, N. Filippakis, P. Krishnan, R. Ramesh, N. Allen,
and Y. Smaragdakis, “Static analysis of Java enterprise applications:
Frameworks and caches, the elephants in the room,” in Proc. 41st
ACM SIGPLAN Conf. Program. Lang. Des. Implementation, 2020,
pp. 794–807.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2568225.2568295
http://wala.sourceforge.net
http://dx.doi.org/10.1145/3381915
https://figshare.com/articles/software/Generic_Sensitivity_Customizing_Context-Sensitive_Pointer_Analysis_for_Generics/20486556
https://figshare.com/articles/software/Generic_Sensitivity_Customizing_Context-Sensitive_Pointer_Analysis_for_Generics/20486556
https://figshare.com/articles/software/Generic_Sensitivity_Customizing_Context-Sensitive_Pointer_Analysis_for_Generics/20486556
http://dx.doi.org/10.1145/3597926.3598120
http://dx.doi.org/10.1145/3293607
http://dx.doi.org/10.1145/3591242
http://dx.doi.org/10.1145/3037697.3037744
http://dx.doi.org/10.1145/3377555.3377885

1162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

Haofeng Li received the B.S. degree from Shan-
dong University, in 2017, and the Ph.D. degree from
the Institute of Computing Technology, Chinese
Academy of Sciences, in 2023. He is currently an
Assistant Professor with the Institute of Computing
Technology, Chinese Academy of Sciences. His
research interests include program analysis, pointer
analysis, and bug detection.

Tian Tan received the B.Eng. degree in software en-
gineering from the Northwestern Polytechnical Uni-
versity, in 2013, and the Ph.D. degree in computer
science from the University of New South Wales,
in 2017. He was a Postdoc working with Aarhus
University, Denmark, from 2017 to 2019. He is
currently an Associate Research Professor with the
Department of Computer Science and Technology,
Nanjing University. His research interests include
program analysis and programming languages.

Yue Li received the B.Eng. degree in software engi-
neering and the M.Eng. degree in computer science
from the Northwestern Polytechnical University, in
2010 and 2012, respectively, and the Ph.D. degree
in computer science from the University of New
South Wales (UNSW Sydney), in 2016. He was a
Postdoc working with Aarhus University, Denmark,
from 2017 to 2019, and UNSW Sydney, from 2016
to 2017. He is currently an Associate Professor with
the Department of Computer Science and Tech-
nology, Nanjing University. His research interests

include program analysis and programming languages.

Jie Lu received the B.S. degree in computer science
from Sichuan University, in 2014, and the Ph.D.
degree from the Institute of Computing Technology,
Chinese Academy of Sciences, in 2020. He is
currently an Associate Professor with the Institute
of Computing Technology, Chinese Academy of
Sciences. His research interests include program
analysis, log analysis, and distributed systems.

Haining Meng received the B.S. degree in software
engineering from Northwest University, China, in
2017. She is currently working toward the Ph.D.
degree with the Institute of Computing Technology,
Chinese Academy of Sciences. Her research inter-
ests include program analysis.

Liqing Cao received the B.S. degree in information
security from Huazhong University of Science and
Technology, China, in 2019. He is currently working
toward the Ph.D. degree with the Institute of Com-
puting Technology, Chinese Academy of Sciences.
His research interests include program analysis.

Yongheng Huang received the B.S. degree in in-
formation security from Huazhong University of
Science and Technology, China, in 2020. He is
currently working toward the Ph.D. degree with
the Institute of Computing Technology, Chinese
Academy of Sciences. His research interests include
program analysis and web security.

Lian Li received the B.Sc. degree in engineering
physics from Tsinghua University, in 1998, and the
Ph.D. degree from the University of New South
Wales, in 2007. He is currently a Professor with
the Institute of Computing Technology, Chinese
Academy of Sciences, where he leads the Program
Analysis Group. His research interests include pro-
gram analysis, more specifically, on program anal-
ysis techniques, and practical tools for improving
software safety and security.

Lin Gao received the B.S. degree from Peking
University, in 1998, and the Ph.D. degree from
the University of New South Wales, in 2009. She
is currently a CTO with Beijing ZhongKe TianQi
Information Technology Co., Ltd.

Peng Di received the Ph.D. degree in computer
science and engineering from the University of
New South Wales, in 2013. He is a Professor-
Level Senior Engineer with Ant Group where he
leads the Program Analysis Group. He is also an
Adjunct Academic Staff with UNSW Sydney and
Zhejiang University. His research interests include
programming languages, compiler technology, and
software engineering. He played a key role in co-
founding several open-source projects, including
SVF, MindSpore, CodeFuse, and others.

Liang Lin is a Collaborating Author with the Database Products Busi-
ness Unit of Alibaba’s Cloud Intelligence Group. He is a Researcher with
the Alibaba Group and also serves as the Head with the AnalyticDB
MySQL Team. The Alibaba Cloud AnalyticDB MySQL Team actively
participates in industry research, continuously improves product capabil-
ities, and is dedicated to providing the market with more agile, effi-
cient, and secure real-time high-concurrency online analytical cloud comput-
ing services.

Liang Lin, photograph and biography not available at the time of publication.

ChenXi Cui is a Collaborating Author with the Database Products Business
Unit of Alibaba’s Cloud Intelligence Group. He is a Member of the Analyt-
icDB MySQL Engineering Efficiency & Quality team.

ChenXi Cui, photograph and biography not available at the time of
publication.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 20,2024 at 01:32:47 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

