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Abstract

Broken object-level authorization (BOLA) vulnerabilities are among
the most critical security risks facing database-backed applications.
However, there is still a significant gap in our systematic under-
standing of these vulnerabilities. To bridge this gap, we conducted
an in-depth study of 101 real-world BOLA vulnerabilities from open-
source applications. Our study revealed the four most common
object-level authorization models in database-backed application.

The insights gained from our study inspired the development
of a new tool called BolaRay. This tool employs a combination of
SQL and static analysis to automatically infer the distinct types of
object-level authorization models, and subsequently verify whether
existing implementations enforce appropriate checks for these mod-
els. We evaluated BolaRay using 25 popular database-backed appli-
cations, which led to the identification of 193 true vulnerabilities,
including 178 vulnerabilities that have never been reported before,
at a false positive rate of 21.86%. We reported all newly identi-
fied vulnerabilities to the corresponding maintainers. To date, 155
vulnerabilities have been confirmed, with 52 CVE IDs granted.
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1 Introduction

This (BOLA) has been the most common and impactful attack on

APIs.

— The Open Web Application Security Project (OWASP) [33]

Database-backed applications utilize a database to manage data,
often accompanied by a front-end to interact with the user and
perform database operations upon the user’s requests. Such ap-
plications are widely adopted across various industries, including
content management systems, e-commerce websites, and hospital
management platforms. However, given the vast amounts of sen-
sitive data managed by these applications, they have also become
prime targets for cybersecurity attacks.

A variety of vulnerabilities, such as SQL injection [35] and
XSS [36], can be exploited to compromise database-backed appli-
cations and steal sensitive data. Among them, broken object-level

authorization (BOLA) vulnerabilities, also known as insecure di-
rect object reference (IDOR) [4], have gained the top position in the
OWASP API Top 10 rankings [34] due to their common occurrence
and high risk. Notably, many widely-used applications, such as Pay-
Pal, Twitter, and TikTok, have suffered from BOLA vulnerabilities,
as reported in HackerOne [39].

Figure 1 illustrates CVE-2022-31295, a BOLA vulnerability in the
application Odfs-1.0 (Online Discussion Forum Site). As the name
suggests, this application allows users to create posts which are
stored in the post table—a database table utilizing id as its primary
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Figure 1: The BOLA vulnerability CVE-2022-31295

key. The URL "http://vulnerable.com?delpost.php?id=1" re-
quests the deletion of a post whose id equals 1.

The authorization model of this application should be fine-
grained at the object level: only the creator of a post should have
the necessary permission to delete it. However, due to the lack
of object-level authorization checks, an attacker can delete other
users’ posts at will. Let us analyze such an attack. 1 The attacker
attempts to delete a post belonging to the victim by tampering with
the id from 1 to 2. 2 The modified request is sent to the application
server, which processes it into a SQL statement. 3 The database
executes the SQL statement to perform the deletion operation, al-
beit undesirably. In this example, it is noteworthy that despite the
server’s validation of the attacker’s role as a poster with DELETE
privileges, it fails to further verify whether the attacker is indeed
the creator of the post to be deleted.

1.1 Challenges

To detect BOLA vulnerabilities, it is vital to understand the underly-
ing object-level authorization model, which determines the appropri-
ate policy for accessing an object. For instance, Figure 1 illustrates
that a post object can only be deleted by its creator. However, it
is challenging, if not impossible, to precisely infer object-level au-
thorization models and efficiently detect BOLA vulnerabilities that
violate those models. Here, we summarize two main challenges:

Challenge 1:How canwe precisely and automatically infer

object-level authorization models? Although there have been
efforts to automatically infer coarse-grained, function-level [32]
authorization models [15, 41, 43, 44, 53], object-level authoriza-
tion models are much more intricate and require finer-grained,
application-specific semantics. This requirement poses a signifi-
cant challenge to automating this process. As a result, existing
approaches are incapable of deriving complex object-level autho-
rization models and often rely on the manual annotation of each
object operation with authorization rules, which is tedious and
error-prone [13].

Challenge 2: How can we efficiently and precisely detect

BOLA vulnerabilities? To detect BOLA vulnerabilities, we need
to accurately compute whether each object access is checked prop-
erly against its authorization models or not. This often demands
expensive path-sensitive analyses, such as model checking and
symbolic execution [7, 9, 12–14, 28, 30], which are difficult to scale
to real-world applications.

1.2 Solutions

To tackle these two challenges, it is imperative to gain a deep
understanding of the real-world BOLA vulnerabilities. For this
purpose, this paper constructs a comprehensive dataset consisting
of 101 BOLA vulnerabilities from the CVE database [1] and the bug

bounty platform Huntr [48]. To the best of our knowledge, this is
the first in-depth study of BOLA vulnerabilities. During our study,
we have obtained two interesting findings, which can respectively
help to address the two challenges mentioned above.

Automatically inferring authorization models. We observe
that there are four distinct kinds of object-level authorization mod-
els in real-world applications. Among these models, only the own-
ership model has been studied before [28, 30], with the other three
models remaining unexplored in the literature. Furthermore, we
observe that all object-level authorization models can be derived
from relations across database tables. For instance, in Figure 1, the
column userid of the post table is the foreign key referencing the
primary key (Column id) of the user table.

In light of this, we propose to infer object-level authorization
models by reasoning about relations between different database
tables. In simple cases, relations between distinct database tables are
directly declared as foreign keys in the database schema. However,
such relations are often not explicitly specified in the schema, but
are instead implicitly implemented in the source code. Hence, to
address this challenge, we have designed a set of rigorous rules to
deduce implicit foreign key references by examining the complex
interaction between program code and database queries.

Efficiently detecting BOLA vulnerabilities. We observe that
all studied BOLA vulnerabilities are due to missing object-level au-

thorization checks. Thus, instead of analyzing whether the autho-
rization model for each object access is consistently enforced or
not (which often requires extensive constraint solving of path con-
ditions), we focus on the common cases where accesses to sensitive
objects lack object-level authorizations. For instance, in Figure 1, an
access to object post needs to be checked against both the object
itself and its creator, user. This approximation leads to an efficient
yet precise approach to hunt BOLA vulnerabilities, which addresses
challenge 2.

It is crucial to understand that missing object-level authorization

checks not only includes simple cases where permission checks
are entirely missing, but also encompasses cases with inconsistent
or incomplete checks that fail to verify the correct corresponding
object. For instance, as shown in Figure 1, although role permissions
are checked, object-level authorization is missing. Additionally,
object-level authorization checks may involve multiple sub-checks.
Any missing sub-checks leads to incomplete authorization, which
is also considered a lack of object-level authorization checks. We
will further elaborate on the details in Section 3.3.

Putting it all together, we have devised an efficient yet precise
static approach for detecting BOLA vulnerabilities in database-
backed applications.

1.3 Contributions

We realize our approach in a new tool named BolaRay and evaluate
it on 25 popular database-backed applications.BolaRay precisely in-
fers object-level authorization models in all evaluated applications,
and reports 193 vulnerabilities, including 178 new vulnerabilities
that have never been found before, with only 54 false positives. To
date, 155 newly reported vulnerabilities have been confirmed and
52 of them have been assigned CVE IDs.

The contributions of this paper are summarized as follows:



Detecting Broken Object-Level Authorization Vulnerabilities in Database-Backed Applications CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

• We provide the first in-depth study of BOLA vulnerabilities
in real-world database-backed applications. Our study sheds
light on new detection techniques for BOLA vulnerabilities
within such applications.
• We introduce a novel static analysis approach to identify
BOLA vulnerabilities in database-backed applications. Our
analysis efficiently uncovers object-level authorization mod-
els with high accuracy by statically analyzing the relation-
ships between database tables.
• We have implemented our approach as a tool dubbed Bo-
laRay, and evaluated it using 25 real-world applications.
BolaRay accurately reported 193 vulnerabilities, including
178 new critical BOLA vulnerabilities. Out of these, 155 have
been confirmed, and 52 CVE IDs have been granted.
• To facilitate future research, we have released the source
code of BolaRay, together with all studied vulnerabilities,
at https://github.com/BolaRay-d/BolaRay.

2 An Illustration Example

Figure 2 and Figure 3 depict an example of a content management
application that is used throughout this paper. Figure 2 presents
the 7 tables in this application, where each table uses id as its
primary key, and implicit foreign key references are highlighted in
yellow. For instance, forumid is an implicit foreign key referencing
forum::id – the primary key id of table forum. Recall that those
implicit foreign key references need to be derived from the source
code. Relationships between distinct tables, derived from foreign
key references, are connected by arrows.

Among the 7 tables, the user table manages registered user
accounts and the profile table stores the profile for each user. The
two tables share the identical primary key, meaning the profile of
a user can be queried from the profile table using their key. The
table forum manages forums, and a user can participate in none
or many forums, as indicated in the user_forum table. Each user
is granted the role "manager" or "poster" in their participating
forums, where a manager can delete forum notices and a poster can
create new posts or manage their own posts. Forum notices and
posts are stored in the notice table and post table, respectively.
Finally, the comment table stores comments and a user can comment
on posts whose status is open.

Figure 3 illustrates four BOLA vulnerabilities, each with distinct
root causes, manifesting in different APIs.

• The API close_post (Figure 3(a)) allows users to set the
status of a given post to Close. A vulnerability arises be-
cause this API does not check whether the requester is the
owner of the target post. Consequently, an attacker can close
any post at will. The fix (line 10) involves adding an object-
level authorization check in the SQL statement to confirm
ownership of the target post.
• The API update_forum (Figure 3(b)) allows a forummanager
to update the topic of a forum. The check at line 2 ensures
that the requester holds the manager role. However, despite
performing this role check, the API does not validate whether
the requester is a member of the target forum. This oversight
leads to a BOLA vulnerability, enabling a manager to update
the topic of any forum. This vulnerability is addressed by
implementing an object-level authorization check in lines

3-9, to verify that the requester is a member of the target
forum.
• In Figure 3(c), the API delete_notice deletes a notice of a
forum as requested by the forum manager. A vulnerability
manifests if the API does not check whether the requester
is a member of the forum to which the deleted notice be-
longs. This authorization rule is enforced through lines 4-9
in Figure 3(c) and lines 1-9 in Figure 3(b), which verifies the
relationship between the target notice and its parent forum,
and the membership between the requester and the forum,
respectively.
• In Figure 3(d), the API add_comment enables users to com-
ment on posts. The vulnerability stems from the API’s failure
to verify whether the post is in an open status. This issue is
rectified in lines 4-9 of Figure 3(d).

Each vulnerability in Figure 3 necessitates a distinct object-level
authorization check. These checks verify various relations between
the accessing object and the requester, or between related objects,
each corresponding to a distinct authorization model. To detect
such vulnerabilities, we need to precisely analyze the fine-grained
authorization model for each object access and then verify whether
the authorization model has been properly implemented.

3 Empirical Study

The USPS hack is a classic example of a broken authorization

vulnerability. User A was able to authenticate to the API and then

pivot and access user B’s and 60 million other people’s information.

— Dan Barahona, Head of Marketing at Biz Dev at APIsec [6]

In this section, we first present the vulnerability collection pro-
cess for our empirical study, then conduct a comprehensive study
on 101 BOLA vulnerabilities. This study aims to answer the follow-
ing questions: what object-level authorization models are present
in real-world applications, and what are the root causes of BOLA
vulnerabilities?

3.1 Vulnerability Collection and Analysis

We conducted an empirical study on BOLA vulnerabilities, analyz-
ing data from the CVE database [1] and Huntr platform [48] follow-
ing previous vulnerability studies [47, 52]. After filtering for open-
source applications with valid patches, we identified 101 BOLA
vulnerabilities for in-depth analysis.Three authors independently
examined each vulnerability, annotating the authorization model,
root cause, and fix.Any disagreements were resolved through dis-
cussions involving a fourth author. This process was completed
over two months. For a detailed methodology and discussion of
study limitations, please refer to our appendix1.

3.2 Authorization Models

Finding 1: There are four types of object-level authorization
models, all of which can be derived by reasoning about relation-
ships between tables from implicit foreign key references.

1https://github.com/BolaRay-d/BolaRay/blob/main/appendix-study.pdf
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id name pass role

0 John *** poster

1 David *** manager

id phone birth

0 8972694 1/3/2001

1 8793571 3/7/1999

id userid forumid

0 0 1

1 1 0

id topic

0 Security

1 Network

id userid forumid title content status

0 0 1 Net WEB Close

1 1 0 Sec CCS Open

id forumid content

0 0 Good

1 0 Great

id postid content

0 0 Good

1 1 Great

Table	“user”Table	“profile” Table	“user_forum” Table	“forum”

Table	“post” Table	“notice”Table	“comment”

1:1 1:m n:1

n:1

1:n
m:n

1:n
n:1

Figure 2: Tables and and their relationships in a content management system.

1 $pid = escape($_POST["pid"]);

2 ……

3 $curr_user = $_SESSION["uid"];

4 $role = getRole($curr_user, ……);

5 if ($role != "poster") {

6 die("Not poster");

7 } else {

8 query("UPDATE post SET status

9 = "Close" WHERE id = '$pid'

10 + AND userid = '$curr_user'

11 ");

12 }

1 $fid = escape($_POST["fid"]);

2 if ($role != "manager") {……}

3 + $row = query("SELECT userid

4 + FROM user_forum WHERE

5 + forumid = '$fid'");

6 + if (!in_array($curr_user,

7 + $row)) {

8 +   die("Not member in forum");

9 + }

10 …

11 query("UPDATE forum SET topic

12 = …… WHERE id = '$fid'");

1 // same as Lines 1-9 in (b)

2 $nid = escape($_POST["nid"]);

3 ……

4 + $row2 = query("SELECT

5 + forumid FROM notice

6 + WHERE id = '$nid'");

7 + if ($row2[0] != $fid) {

8 +   die("Notice not found");

9 + }

10 ……

11 query("DELETE FROM notice

12 WHERE id = '$nid'");

1 $pid = escape($_POST["pid"]);

2 $cont = escape($_POST["cont"]);

3 ……

4 + $row = query("SELECT status

5 + FROM post WHERE id = '$pid'");

7 + if ($row[0] == "Close") {

8 +   die("Post closed");

9 + }

10 ……

11 query("INSERT INTO comment

12 (postid, content) VALUES 

13 ('$pid', '$cont')");

(a) close_post.php (b) update_forum.php (c) delete_notice.php (d) add_comment.php
Figure 3: Four examples of BOLA vulnerabilities from Figure 2. Lines 1-9 of the code snippet in (b) has been inlined in the code

snippet in (c).

USER OBJECT

STATUS

N

(a)	Ownership	model

1:1

USER JUNCTION1:m OBJECT

USER OBJECT1:n

n:1

USER OBJECT_P1/m:n OBJECT_C1:n

(b)	Membership	model

(c)	Hierarchical	model

OBJECT_A OBJECT_B
Y

(d)	Status	model

1:n …

Figure 4: Four different object-level authorization models.

Figure 4 illustrates the four authorization models in database-
backed applications. The first three models depict distinct relation-
ships between a user and an object. The last model, named the status
model, relates an object to the status of another object, suggesting
the necessity to recognize the status column in detecting violations
of this specific model.

3.2.1 Ownership model. The ownership model is perhaps the most
studied authorization model, wherein a user directly owns an object
as characterized by a direct one-to-one (1:1) or one-to-many (1:n)
relationship between the user and the object, or more specifically,
between a user table and an object table. Under this model, an object
can only be manipulated by its owner. For instance, in Figure 2, a
user owns their personal profile (1:1) and multiple posts created by

them (1:n). Consequently, a post can only be deleted by its owner,
as exemplified in Figure 3(a).

3.2.2 Membership model. In this model, the relationship between
users and objects is modeled as many-to-many (m:n), indicating
that (1) an object can be accessed by a specific group of users, and
(2) a user can have access to multiple objects. The relationship
between a user and a forum in Figure 2 is such an example: a user
can participate in multiple forums, and conversely, a forum can
accommodate multiple users.

To capture this membership relationship, a junction table (such
as user_forum in Figure 2) is often introduced to join the user table
and the object table together, establishing the connections between
users and objects.

3.2.3 Hierarchical model. This model is a combination of an own-
ership or membership model with one or multiple parent-child
relationships between objects, where a parent object can own mul-
tiple child objects. For instance, in Figure 2, a user owns their post,
and a post owns all comments on itself. Thus, the owner of a post
also indirectly owns all comments on that post. Consequently, only
the owner of the post can manipulate comments on it. Another
example involves the user table, the forum table, and the notice
table: a user can manage forum notices (child objects of a forum)
only if he or she is a member of that forum.

3.2.4 Status model. In this model, objects possess statuses, and
users are only permitted to execute actions on objects when they are
in specific states. For instance, in Figure 2, after a post is closed by
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Table 1: The root causes and fix strategies.

Root causes Code fix SQL fix Total

Missing Ownership Check 38 25 63(62.37%)
Missing Membership Check 7 0 7(6.93%)
Missing Hierarchical Check 9 0 9(8.91%)

Missing Status Check 22 0 22(21.78%)
Total 76 (75.24%) 25 (24.75%) 101

its owner, other users are barred from commenting on it. Another
common scenario involves items becoming unavailable for purchase
once they have been removed from the shelves.

3.3 Root Causes and Fixes

Finding 2: Each authorization model is accompanied by its own
set of authorization rules. Violating any of these rules leads to a
BOLA vulnerability. In our study, all BOLA vulnerabilities stem
from missing object-level authorization checks, which can be ad-
dressed by adding checks in the source code (75.24%) or in SQL
statements (24.75%).

As shown in Table 1, all BOLA vulnerabilities are caused by
missing distinct types of object-level authorization checks:

• Missing ownership checks arises because an application fails
to verify whether the current user is indeed the owner of
the object being accessed. Figure 3(a) is an example where
the ownership of the target post is not properly checked.
• Missing membership checks is caused by the lack of check
on whether a requester belongs to the group authorized to
operate on a specific object. The vulnerability in Figure 3(b)
is such an example, due to the fact that the application fails
to confirm if the requester is a member of the target forum.
• Missing hierarchical checks can be triggered by missing own-
ership or membership checks, or by the lack of a check
against the parent-child relationship between distinct ob-
jects. The hierarchical authorization model is often realized
through multiple sub-checks which respectively verify own-
ership or membership of corresponding objects and the re-
lationship between parent objects and child objects. Any
missing sub-checks can lead to incomplete authorization.
For instance, in Figure 3(c), in addition to verifying the mem-
bership between the requester and the forum, the application
needs to further ensure that the target notice is a child of the
target forum. The two vulnerabilities, CVE-2021-4194 and
Huntr-e6144554, are triggered in the same fashion, i.e., miss-
ing checks for parent-child relationships. Hence, to avoid
such vulnerabilities, we need to ensure that all required sub-
checks have been enforced.
• Missing status checks occurs because the application does
not verify the current status of an object before performing
specific operations. This issue is exemplified in Figure 3(d),
where, despite the target post being closed, the oversight in
checking the target post’s status enables attackers to leave
comments undesirably. It is important to note that multiple
status checks may be required to safely perform an opera-
tion. In our study, four vulnerabilities–CVE-2022-0170, CVE-
2022-0574, CVE-2022-0726, and CVE-2022-0727–are caused
by checking only one status variable while ignoring others.

Building Database Schemas

Analyzing Table Relationships

Identifying Authorization Models

Locating Sensitive Operations

Collecting Conditional Checks

Hunting BOLA Vulnerabilities

Inferring Object-Level 

Authorization Models
Detecting BOLA Vulnerabilities

DAL
Specifications

Vulnerability
Reports

Applications

Figure 5: Overview of BolaRay.

For instance, in CVE-2022-0574, the flawed application pub-
lify – a publishing platform – only verifies that the post is
commentable when adding comments on it, without check-
ing whether the post is in draft state or not. To precisely
detect such vulnerabilities, it is necessary to identify all re-
quired status checks for a specific operation, which is quite
challenging. A cautious approach is to require all statuses of
an object to be checked, which ensures safety but may result
in false positives. However, as showcased in Section 5, we
did not encouter such false positives in our experiments.

All studied vulnerabilities were fixed by adding extra object-level
authorization checks: 75.24% of fixes introduced extra checks in
the source code, and 24.75% of vulnerabilities were addressed by
introducing extra checks in the WHERE clauses of corresponding
SQL statements. In code-based fixes, data stored in database ta-
bles are retrieved into program variables via SQL statements, and
object-level authorization is performed by checking those variables
in conditional statements. Such a fixing strategy is suitable for com-
plex authorization models, which often involve multiple sub-checks,
including the hierarchical model (Figure 3(c)) and the status model
(Figure 3(d)). On the other hand, SQL-based fixes directly patch ex-
isting SQL queries with additional predicates in their WHERE clauses.
This approach is often favored in relatively simple authorization
models, such as the ownership model (Figure 3(a)). Conversely, to
detect such vulnerabilities, we need to identify the authorization
model for each object access and further verify whether the object-
level authorization checks are properly implemented in both the
source code and SQL statements.

4 BolaRay

It is vital that we check all objects and that we check them for read,

update and delete actions. We need to check every functionality that

has access to these objects.

— Stepan Ilyin, Verified expert from wallarm [17]

In light of our empirical study, we propose BolaRay, a new
BOLA vulnerability detection tool. As depicted in Figure 5, the tool
comprises two primary modules. The first module automatically in-
fers object-level authorization models in three steps. Subsequently,
the second module detects BOLA vulnerabilities by verifying that
the set of checks for an object access enforces the authorization
model of that object.

https://huntr.dev/bounties/e6144554-9270-4e15-a275-0c22e290f474/
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name
columns

name & type
primary

key
foreign

keys
unique
keys

user [(id, int[4]), (name, char[20]), …] id [] [id]

profile [(id, int[4]), (phone, int[11]), …] id [(id::user)] [id]

forum [(id, int[4], (topic, char[20]), …] id [] [id]

… … … … …

Figure 6: The schema of our example in Figure 2.

4.1 Inferring Object-Level Authorization Models

Guided by Finding 1, we automatically infer object-level autho-
rization models in three steps: the first step constructs a database
schema from table creation statements; the second, also the key
step, derives table relationships by analyzing implicit foreign key
references; and the third step infers authorization models from
these table relationships.

4.1.1 Building Database Schemas. Given a database-backed ap-
plication, we build the database schema by considering all table
creation statements in this application. Table creation statements
specify the name, columns, and keys of each table. These state-
ments may be declared in SQL scripts (.sql files) or incorporated
into source code, either as direct query strings or through database
manipulation APIs provided by the underlying Data Access Layer
(DAL) framework. Section 4.3 will provide a detailed explanation
of how table creation statements and other SQL statements are
handled.

The schema summarizes all tables managed by the database.
Figure 6 shows the schema of our example in Figure 2. For simplicity,
not all tables are given. Each table has a unique name and consists
of a set of columns in the form of <name, type>. The primary key is
the column uniquely indexing the table, foreign keys declare those
columns that refer to the primary keys of other tables, and unique
keys are those columns that can only contain unique values.

Relationships explicitly declared as foreign keys are directly
encoded in the schema. For instance, in Figure 6, the primary key
of table profile is also a foreign key referring to the table user,
reflecting the 1-to-1 mapping between a user and their profile.
However, the foreign keys for other tables are set to empty, and
their relationships need to be inferred in the next step.

4.1.2 Analyzing Table Relationships. The crux of deducing table re-
lationships lies in precisely identifying implicit foreign keys, which
are columns that refer to the primary keys of other tables. Due to
various reasons [18], these foreign keys often are not declared in the
schema but instead implemented in the source code. Without loss
of generality, we hereafter assume that a foreign key contains only
one column. Our formulation can be easily extended to support
cases with multiple columns constituting a foreign key.

Definition 1. (Foreign key). A foreign key takes the form of

(𝑡1, 𝑡2 :: 𝑐2), where column 𝑐2 of table 𝑡2 refers to the primary key of

table 𝑡1. The notation 𝑡 :: 𝑐 is used to denote column 𝑐 of table 𝑡 , and

it is simply written as 𝑐 if the table 𝑡 is understood.

Identifying implicit foreign keys can be challenging since such
information lies in the complex interaction between source code and
database operations. For instance, if a variable holding a primary
key value of table 𝑡1 is used in a WHERE clause of a subsequent query

Program 𝑝 ::= 𝑇 ; 𝑠; 𝑣
Tables 𝑇 ::= 𝑡 {𝑐; 𝑐𝑝 ; (𝑐 𝑓 : 𝑡); 𝑐𝑢 }

Statements 𝑠 ::= 𝑙 C : ⟨𝑘, 𝑡, 𝑐, (𝑐, 𝑣)⟩ | 𝑙 C : 𝑣 ← ⟨𝑘, 𝑡, 𝑐, (𝑐, 𝑣)⟩
Keywords 𝑘 ::= SELECT | DELETE | INSERT | UPDATE
Variables 𝑣 ::= 𝑥

Checks C ::= 𝑡 :: 𝑐 | (𝑡 :: 𝑐, 𝑡 :: 𝑐)
Identifiers 𝑡 , 𝑐 , 𝑥
Locations 𝑙

Figure 7: Domains used in formalism.

𝑙C : ⟨−, 𝑡, −, (𝑐, 𝑣) ⟩
(𝑙, 𝑡 :: 𝑐, 𝑣) ∈ Binding [Key-value]

𝑙C : 𝑣 ←− ⟨SELECT, 𝑡, 𝑐, −⟩
(𝑙, 𝑡 :: 𝑐, 𝑣) ∈ Binding [Select]

(𝑙1, 𝑡1 :: 𝑐𝑝 , 𝑣1 ) ∈ Binding (𝑙2, 𝑡2 :: 𝑐2, 𝑣2 ) ∈ Binding
𝑣1 aliases to 𝑣2 𝑙1 dominates 𝑙2
(𝑡1, 𝑡2 :: 𝑐2 ) ∈ ForeignKey

[Connect]

Figure 8: Rules for foreign key analysis.

on column 𝑐2 of table 𝑡2, it is a strong indication of the foreign
key (𝑡1, 𝑡2 :: 𝑐2). To address this, we design a set of rigorous rules,
which will be discussed shortly, to derive the set of foreign keys.

For illustrative purposes, Figure 7 presents the domain used in
our formalism. A program 𝑝 consists of a set of tables 𝑇 , a set of
statements 𝑠 , and a set of program variables 𝑣 . A table 𝑡 consists
of a set of columns 𝑐 , where 𝑐𝑝 ∈ 𝑐 is the column for primary key;
(𝑐 𝑓 : 𝑡) is the set of schema-declared foreign keys, where column
𝑐 𝑓 ∈ 𝑐 refers to the primary key of another table; 𝑐𝑢 denotes the set
of unique keys 𝑐𝑢 ∈ 𝑐 .

A SQL statement 𝑠 takes the form of 𝑙𝐶 : ⟨𝑘, 𝑡, 𝑐, (𝑐′, 𝑣 ′)⟩ or
𝑙𝐶 : 𝑣 ← ⟨𝑘, 𝑡, 𝑐, (𝑐′, 𝑣 ′)⟩, denoting the statement at location 𝑙

applies a query operation 𝑘 to table 𝑡 with 𝑐 as the target column
(only when 𝑘 is a SELECT operation), and 𝑣 holding the resulting
value. Note that location 𝑙 is guarded by a set of checks C (to
be computed in Section 4.3), where each check either validates a
column 𝑡 :: 𝑐 or compares two columns (𝑡 :: 𝑐, 𝑡 :: 𝑐). Finally, the
pair (𝑐′, 𝑣 ′) relates column 𝑐′ to variable 𝑣 ′, as illustrated in the
following cases:

• Key-value pairs in a WHERE clause: "... WHERE 𝑐′ = 𝑣 ′", or
"... WHERE 𝑐′ IN 𝑣 ′".
• Key-value pairs in an UPDATE operation: "UPDATE ... SET
𝑐′ = 𝑣 ′ ...".
• Key-value pairs in an INSERT operation: "INSERT INTO ...
(𝑐′, ...) VALUES (𝑣 ′, ...)".

A SQL query containing multiple such pairs is normalized into
multiple statements, one for each pair. For example, a SQL statement
𝑙 : "UPDATE comment SET pid = $p WHERE status = $s" is
represented by two statements: 𝑙 : ⟨ UPDATE, comment, -, (pid,
$p) ⟩ and 𝑙 : ⟨ UPDATE, comment, -, (status, $s) ⟩.

For clarity, Figure 7 considers only database query statements.
Those statements concerning data and control flows are processed
in a separate analysis, to compute data and control dependencies,
as detailed in Section 4.3. Prior to exploring the specific rules for
determining foreign keys, let us first introduce the two following
sets:
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Step 1:

(𝑡1, 𝑡2 :: 𝑐2 ) ∈ ForeignKey (𝑡3, 𝑡2 :: 𝑐′2 ) ∈ ForeignKey
(𝑡1, 𝑡3 :: −) ∉ ForeignKey (𝑡3, 𝑡1 :: −) ∉ ForeignKey

(𝑡2, − :: −) ∉ ForeignKey

(𝑡1, 𝑡2 :: 𝑐2, 𝑡3, 𝑡2 :: 𝑐′2 ) ∈ MNR

𝑡2 ∈ JunctionTable

[M-N-Rel]

(𝑡1, 𝑡2 :: 𝑐2, 𝑡3, 𝑡2 :: 𝑐′2 ) ∈ MNR (𝑡3, 𝑡4 :: 𝑐4, 𝑡5, 𝑡4 :: 𝑐′4 ) ∈ MNR

(𝑡1, 𝑡2 :: 𝑐2, 𝑡5, 𝑡4 :: 𝑐′4 ) ∈ MNR

[M-N-Rel-R]

Step 2:

(𝑡1, 𝑡2 :: 𝑐𝑢 ) ∈ ForeignKey 𝑡2 ∉ JunctionTable

(𝑡1, 𝑡2 :: 𝑐𝑢 ) ∈ OOR
[1-1-Rel]

(𝑡1, 𝑡2 :: 𝑐2 ) ∈ ForeignKey 𝑐2 ∉ 𝑡2 :: 𝑐𝑢
𝑡2 ∉ JunctionTable

(𝑡1, 𝑡2 :: 𝑐2 ) ∈ ONR
[1-N-Rel]

Figure 9: Rules for table relation analysis.

• Binding, a set of triples in the form of (𝑙, 𝑡 :: 𝑐, 𝑣), which
means that program variable 𝑣 may hold values from column
𝑡 :: 𝑐 due to the statement at location 𝑙 .
• ForeignKey, a set of foreign keys (Definition 1) in the form
(𝑡1, 𝑡2 :: 𝑐2).

Figure 8 outlines the rules for deducing foreign keys. Specifically,
(𝑙, 𝑡 :: 𝑐, 𝑣) ∈ Binding if at least one of the following conditions
holds true: (1) there exists a SQL statement 𝑙𝐶 : ⟨−, 𝑡,−, (𝑐, 𝑣)⟩,
where the pair (𝑐, 𝑣) relates column 𝑐 to variable 𝑣 ([Key-value]),
including three cases as discussed above. (2) 𝑣 receives results from
column 𝑐 (of table 𝑡 ) via SELECT statements ([Select]).

In [Connect], (𝑡1, 𝑡2 :: 𝑐2) is regarded as a foreign key if the
binding variable 𝑣1 of 𝑡1 :: 𝑐𝑝 (i.e., (𝑙1, 𝑡1 :: 𝑐𝑝 , 𝑣1) ∈ Binding)
aliases to the binding variable 𝑣2 of 𝑡2 :: 𝑐2 (i.e., (𝑙2, 𝑡2 :: 𝑐2, 𝑣2) ∈
Binding), indicating that 𝑡2 :: 𝑐2 refers to the primary key of 𝑡1.
To filter false foreign keys, inspired by [8], we also require that
the two involving statements need to be executed together. This
requirement is approximated by the dominance relationship [3]
between the two statements, i.e., 𝑙1 dominates 𝑙2.

Next, Figure 9 computes table relationships based on deduced
foreign keys. We further define four sets, OOR, ONR,MNR and
JunctionTable, as follows:
• OOR (ONR), a set of pairs in the form of (𝑡1, 𝑡2 :: 𝑐2), which
means that there is a 1:1 (1:n) relationship between 𝑡1 and
𝑡2, and 𝑐2 is a foreign key referring to 𝑡1.
• JunctionTable, a set of junction tables used to join two
tables together, as utilized in a m:n relationship.
• MNR, a set of tuples in the form of (𝑡1, 𝑡2 :: 𝑐2, 𝑡3, 𝑡 ′2 :: 𝑐′2),
denoting the m:n relationship between tables 𝑡1 and 𝑡3: the
two tables are joined through one or more junction tables,
𝑡2, . . . , 𝑡 ′2 , with 𝑡2 :: 𝑐2 and 𝑡 ′2 :: 𝑐′2 being the foreign keys
referencing 𝑡1 and 𝑡3, respectively. In the simple two-table
join case, 𝑡2 and 𝑡 ′2 are the same.

The rules in Figure 9 are processed through two distinct steps.
Initially, the rules [M-N-Rel] and [M-N-Rel-R] are exclusively
applied to deduce m:n relationships and to calculate junction tables.
Subsequently, in the second step, these junction tables facilitate the
application of the two rules [1-1-Rel] and [1-N-Rel].

In [M-N-Rel], the m:n relationship between 𝑡1 and 𝑡3 is con-
cluded only if the following conditions are met: 1) 𝑡1 and 𝑡3 are
not directly related, meaning (𝑡1, 𝑡3 :: −) ∉ ForeignKey and
(𝑡3, 𝑡1 :: −) ∉ ForeignKey; and 2) 𝑡2 is introduced solely to join
𝑡1 and 𝑡3 together, indicated by (𝑡2,− :: −) ∉ ForeignKey. In

our example in Figure 2, similar to the junction table user_forum,
the table post also contains two foreign keys userid:user and
forumid:forum. However, this table is not considered a junction
table since it is also referenced by the foreign key comment:postid.
The rule [M-N-Rel-R] recursively deduce m:n relationships to han-
dle multiple-table joins.

The rules for 1:1 ([1-1-Rel]) and 1:n ([1-N-Rel]) relationships
are self-explanatory. They are distinguished based on whether the
foreign key 𝑡2 :: 𝑐2 is unique. It is important to recall that a junc-
tion table is solely introduced to join two other tables and it does
not store actual object; thus, all junction tables are excluded from
consideration (indicated by 𝑡2 ∉ JunctionTable) when deriving
1:1 and 1:n relationships.

4.1.3 Identifying AuthorizationModels. Figure 10 outlines the rules
for inferring authorization models. Before diving into its details,
we first introduce four additional sets UserTable, OwnerModel,
MemberModel, and StatusModel, as explained below:
• UserTable, a set of user tables.
• OwnerModel, a set of tuples in the form of (𝑡1, 𝑡2 :: 𝑐2),
signifying a 1:1 or 1:n relationship between 𝑡1 and 𝑡2 (OOR or
ONR), which forms the foundation of an ownership model.
• MemberModel, a set of tuples in the form of (𝑡1, 𝑡2 ::
𝑐2, 𝑡3, 𝑡 ′2 :: 𝑐′2), signifying a m:n relationship (MNR) in the
same form.
• StatusModel, a set of triples like (𝑡1, 𝑡2 :: 𝑐2, 𝑡1 :: 𝑐′1), de-
noting a 1:1 or 1:n relationship between 𝑡1 and 𝑡2, and the
column 𝑡1 :: 𝑐′1 signifies a status value.

For simplicity, we have not introduced sets for hierarchical models,
which by construction, can be computed by joining the set Own-

erModel or MemberModel with OOR and ONR.For detailed
information on hierarchical models, please refer to our appendix2.

The first two rules in Figure 10 are used to compute user
tables. As a common practice, the current user ID is stored in the
global session for future authorization purposes. Consider the
following code snippet as an example: after a user logs in, the
user ID is stored in the global variable $_SESSION["uid"] (line
4), which is then accessible from anywhere in the source code.

1 $row = query("SELECT id FROM user WHERE name = '$name'
AND pass = '$pass'");

2 if ($row == null)

3 die("Invalid user");

4 $_SESSION["uid"] = $row[0];

In light of this heuristic, the rule [User-Table] constructs an
initial set of user tables in UserTable. We further extend the set
UserTable with rule [User-Ext], which also regards those tables
as user tables if they have a 1:1 relationship with an existing user
table. As a result, in our example in Figure 2, the profile table is
also considered as a user table.

The next two rules, [Own-Model] and [Mem-Model], infer the
ownership model and membership model, respectively, which are
self-explanatory. The rule [Stat-Model] relies on the recognition
of status columns. We consider that column 𝑡 :: 𝑐 is a status column
if all the following conditions are met:

2https://github.com/BolaRay-d/BolaRay/blob/main/appendix-hm.pdf
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(−, 𝑡 :: 𝑐, 𝑣) ∈ Binding 𝑣 aliases to 𝑣′

𝑣′ is stored in the global session
𝑡 ∈ UserTable

[User-Table]

𝑡1 ∈ UserTable (𝑡1, 𝑡2 :: −) ∈ OOR
𝑡2 ∈ UserTable

[User-Ext]

𝑡1 ∈ UserTable (𝑡1, 𝑡2 :: 𝑐2 ) ∈ (OOR ∪ ONR)
(𝑡1, 𝑡2 :: 𝑐2 ) ∈ OwnerModel

[Own-Model]

𝑡1 ∈ UserTable
(𝑡1, 𝑡2 :: 𝑐2, 𝑡3, 𝑡 ′2 :: 𝑐′2 ) ∈ MNR

(𝑡1, 𝑡2 :: 𝑐2, 𝑡3, 𝑡 ′2 :: 𝑐′2 ) ∈ MemberModel

[Mem-Model]

(𝑡1, 𝑡2 :: 𝑐2 ) ∈ (OOR ∪ ONR)
𝑡1 :: 𝑐′1 is a status column

(𝑡1, 𝑡2 :: 𝑐2, 𝑡1 :: 𝑐′1 ) ∈ StatusModel

[Stat-Model]

Figure 10: Rules for authorization model inference.

(1) 𝑐 holds a type with a small range of values, such as BOOLEAN,
TINYINT(1), or ENUM. This condition ensures that the num-
ber of states represented by 𝑐 is finite and enumerable. For
example, the status column of the table post in Figure 2
can only have two values: Open or Close.

(2) 𝑐 is modifiable, which ensures that 𝑐 can be dynamically
changed by the application.

(3) 𝑐 is used to control the visibility or behavior of data presented
to the user by the frontend, as shown in line 2 in the code
snippet below. Note that this condition is specific to web
applications only.

1 $row = query("SELECT * FROM post WHERE id = '$pid' AND  
forumid = '$fid'");

2 if ($row[status] == "Open") {
3 echo "<h1> $row[title]</h1>";
4 echo "<body> $row[content] </body>";
5 ……
6 }

Finally, we want to point out that a hierarchical model involves
three (or more) tables 𝑡1, 𝑡2 and 𝑡3, where 𝑡1 and 𝑡2 constitute an
ownership or membership model, and 𝑡2 and 𝑡3 form one or mul-
tiple 1:1 or 1:n relationships. Thus, we can reuse the two rules
[Own-Model] and [Mem-Model] to deduce hierarchical models.
For simplicity, these rules are not given in Figure 10.

4.2 Detecting BOLA Vulnerabilities

In this module, we first locate all sensitive database query state-
ments and calculate the set of checks C enforced for each query
statement 𝑙 . Section 4.3 will demonstrate how the two steps are
performed in detail. Here we present the rules for detecting BOLA
vulnerabilities in Figure 11. For illustrative purposes, we first intro-
duce the following two sets:

• AdminColumn, a set of admin columns, which represent
administrators that can perform privileged operations.
• SafeOp, a set of safe operations.

The AdminColumn set is introduced to model privileged users
such as system administrators of an application. Intuitively, system
administrators can perform any privileged operations, irrespective

𝑙C : ⟨DELETE, 𝑡1, −, −⟩ 𝑡1 ∈ UserTable
𝑡2 :: 𝑐2 ∈ C

𝑡2 :: 𝑐2 ∈ AdminColumn

[Admin-Col]

𝑙C : ⟨−, 𝑡2, −, −⟩ 𝑡1 :: 𝑐1 ∈ C
𝑡1 :: 𝑐1 ∈ AdminColumn

𝑙C ∈ SafeOp
[Admin-Check]

(𝑡1, 𝑡2 :: 𝑐2 ) ∈ OwnerModel

𝑙C : ⟨−, 𝑡2, −, −⟩ (𝑡1 :: 𝑐𝑝 , 𝑡2 :: 𝑐2 ) ∈ C
𝑙C ∈ SafeOp

[Own-Check]

(𝑡1, 𝑡2 :: 𝑐2, 𝑡3, 𝑡 ′2 :: 𝑐′2 ) ∈ MemberModel

𝑙C : ⟨−, 𝑡3, −, −⟩
(𝑡1 :: 𝑐𝑝 , 𝑡2 :: 𝑐2 ) ∈ C (𝑡3 :: 𝑐𝑝 , 𝑡 ′2 :: 𝑐′2 ) ∈ C

𝑙C ∈ SafeOp

[Mem-Check]

(𝑡1, 𝑡2 :: 𝑐2, 𝑡1 :: 𝑐′1 ) ∈ StatusModel

𝑙C : ⟨−, 𝑡2, −, −⟩ 𝑡1 :: 𝑐′1 ∈ C
𝑙C ∈ SafeOp

[Stat-Check]

Figure 11: Rules for checking safety of sensitive operations.

of the four authorization models discussed previously. We have ob-
served that verifying whether the current user is an administrator
often involves specific columns, termed admin columns. In this con-
text, we initially identify the set of admin columns,AdminColumn,
by applying the [Admin-Col] rule. Specifically, we start by identi-
fying privileged operations that require administrator permissions,
which, in our implementation, are those DELETE operations on a
user table. Then, for a privileged operation 𝑙 C : ⟨DELETE, 𝑡1,−,−⟩,
where 𝑡1 is a user table, any columns involved in its condition
checks (i.e., 𝑡2 :: 𝑐2 ∈ C) are deemed admin columns.

Subsequently, if a sensitive operation 𝑙 C is secured by a condition
check that involves an admin column (i.e., 𝑡1 :: 𝑐1 ∈ C and 𝑡1 :: 𝑐1 ∈
AdminColumn), it is deemed safe without further consultation
of our authorization models. This is established by the [Admin-
Check] rule.

The next three rules, [Own-Check], [Mem-Check] and [Stat-
Check], enforce authorization rules for the corresponding owner-
ship, membership, and status models, respectively.

Given (𝑡1, 𝑡2 :: 𝑐2) ∈ OwnerModel, the [Own-Check] rule en-
sures that each sensitive operation 𝑙 C on table 𝑡2 (𝑙 C : ⟨−, 𝑡2,−,−⟩)
is guarded by proper ownership checks. Specifically, we determine
whether the two columns 𝑡1 :: 𝑐𝑝 and 𝑡2 :: 𝑐2 are involved in the
same condition check for 𝑙 C , i.e., (𝑡1 :: 𝑐𝑝 , 𝑡2 :: 𝑐2) ∈ C. For in-
stance, in Figure 3 (a), this is indicated by the condition at Line 10,
i.e., userid = $curr_user, where userid refers to the column
post::userid and $curr_user refers to user::id.

The [Mem-Check] rule is somewhat intricate: it requires that
two groups of foreign and primary key pairs – specifically, 𝑡1 :: 𝑐𝑝
and 𝑡2 :: 𝑐2, along with 𝑡3 :: 𝑐𝑝 and 𝑡 ′2 :: 𝑐′2 – be involved
in two separate conditions checks, respectively. That is, (𝑡1 ::
𝑐𝑝 , 𝑡2 :: 𝑐2) ∈ C and (𝑡3 :: 𝑐𝑝 , 𝑡 ′2 :: 𝑐′2) ∈ C. In our example in
Figure 3(b), the two conditions at lines 5-7 – forumid = $fid
and in_array($curr_user, $row) – implement the authoriza-
tion rules of the membership model (user, user_forum::userid,
forum, user_forum::forumid) for the query statement at line
11. Here, forumid refers to user_forum::forumid, $fid refers
to forum::id, $curr_user refers to user::id, and $row refers to
user_forum::userid.
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1 DAL Specification
2 {
3 "name": "$wpdb->update",
4 "op": "UPDATE",
5 "table": {"name": "$0"},
6 "columns": {"name": "$1"},
7 "where": {"name": "$2"}
8 }

Figure 12: A DAL specification example in the benchmark

SP Manager-4.57.

In the rule [Stat-Check], we have 𝑡1 :: 𝑐′1 ∈ C, ensuring that
the status column is considered. For example, in Figure 3 (d), the
condition at Line 7 checks the status of the post before adding a
comment.

Finally, those sensitive operations that are not in the SafeOp
set are reported as BOLA vulnerabilities violating corresponding
authorization models. It is noteworthy that the two rules, [Own-
Check] and [Mem-Check], can be easily extended to validate the
existence of checks for the hierarchical authorization model. For
clarity, we do not incorporate these rules in Figure 11. Furthermore,
Figure 11 illustrates the simple case where each sensitive operation
corresponds to a single authorization model. In reality, when oper-
ating on the post table in Figure 2, since (user, post::userid)
∈ OwnerModel, and the tables user, forum, and post together
constitute a hierarchical membership model, the statement must
be validated for each model separately.

4.3 Implementation

We have developed BolaRay on top of TChecker [25], an inter-
procedural static analysis tool for PHP applications. Specifically,
TChecker performs inter-procedural data-flow analysis on PHP
objects to infer their types or values. This enables precise identifica-
tion of method call targets, facilitating the incremental construction
of an precise call graph, which further enhances inter-procedural
data-flow analysis. TChecker supports context-sensitivity but not
path-sensitivity, which is also not required by BolaRay.Our imple-
mentation consists of 12K lines of Groovy code. Here, we elaborate
on the implementation details of the techniques used in Section 4.1
and Section 4.2.

Parsing SQL Statements. We utilize regular expressions (e.g.,
CREATE TABLE.*, SELECT.*FROM.*, UPDATE.*SET.*, INSERT
INTO.*, DELETE FROM.*) to identify SQL statements (as direct
query strings) within the source code. Subsequently, we leverage
existing research on log analysis [49, 54] to recursively analyze
variables within these statements, aiming to distinguish static text
from variables in SQL statements. After this initial step, we em-
ploy JsqlParser [19] to parse all SQL statements, which builds the
schema as shown in Figure 6 and normalizes each statement in the
form of ⟨𝑘, 𝑡, 𝑐, (𝑐′, 𝑣 ′)⟩, as depicted in Figure 7. Any SQL statement
that cannot be successfully parsed is disregarded.

DAL Specifications. BolaRay relies on manual input Data Access
Layer (DAL) specifications to handle SQL statements encapsulated
in database manipulating framework APIs. The DAL, akin to an
ORM (Object-Relational Mapping) framework, is tasked with direct
database interactions, offering an abstract API for querying and

manipulating data. The DAL specifications detail how these abstract
APIs relate to SQL queries, with our DAL specifications drawing
on existing methodology [42] for implementation.

Figure 12 presents a simplified DAL specification example in
JSON format. The specification declares the API name (line 3), its
corresponding SQL operation (line 4), as well as API parameters
denoting the target table (line 5), the operating columns (line 6),
and the conditions for the operation (line 7). Such a configuration
enables BolaRay to reconstruct SQL statements from invocations
of DAL APIs. In this paper, we have manually written Data Access
Layer (DAL) specifications for 100 APIs, with an average of 13 lines
per method.

Computing Aliases. We leverage the use-def based data depen-
dency analysis in TChecker to compute aliases, where two vari-
ables are considered as aliases if they depend on a common variable.
We enhanced TChecker’s dependency analysis with three specific
extensions: 1) We handle loops in the form of ‘foreach ($arr as
$key⇒$value)’, common in PHP, by linking $arr to both $key
and $value in the def-use analysis, thus treating $arr as an alias
for both $key and $value; 2) We introduce function summaries for
common library functions, including array_push and compact; 3)
We differentiate accesses to the same array with distinct indexes,
e.g., $row[0] and $row[1]. In BolaRay, aliases are instrumental
in associating a variable with a table column, which also forms
the foundation to infer implicit foreign keys ([Connect]). In Fig-
ure 3(a), $curr_user refers to user::id if it aliases to 𝑣 ′ and (𝑙 ,
user::id, 𝑣 ′) ∈ Binding.

Locating Sensitive Operations. Theoretically, all database query
statements are sensitive operations that need to be checked by Fig-
ure 11. However, this overly conservative approach may introduce
numerous false positives. Specifically, we have summarized three
scenarios that may not require object-level authorizations:
• SELECT statements. It is too restrictive to check every SELECT
statement since only those statements querying confidential
information require object-level authorization. Revisiting
our example in Figure 2: a user can read posts created by
another user from the post table but cannot query his or her
profile in the profile table. How to automatically deduce
whether the queried information is confidential or not is an
interesting topic worthy of separate investigation.
• INSERT operations in hierarchical models. In Figure 2, due
to the absence of a hierarchical membership check involving
the three tables – user, forum, and post – a user can insert
a post into any forum regardless of their membership in that
forum. We reported this issue to the original developer, but
they do not perceive this as a security issue, considering it
merely a functional bug. It remains debatable whether such
violations could lead to vulnerabilities.
• DELETE operations in Status models. Typically, DELETE oper-
ations do not consider the impact on status.

In conclusion, we consider database operation not falling into
the above three categories as sensitive operations.

Collecting Conditional Checks. The set of checks, C, guarding
a statement 𝑙 :< −, 𝑡,−, (𝑐, 𝑣) > includes conditions in the WHERE
clause of the statement (i.e., checks implied by (𝑐, 𝑣)) as well as
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those in conditional branches on which 𝑙 is control-dependent. We
associate each program variable 𝑣 in a condition with its corre-
sponding table column (if applicable), and additional checks in the
WHERE clauses of those statements binding 𝑣 to a specific column are
incorporated. Consequently, (𝑐, 𝑣) implies that (𝑡 :: 𝑐, 𝑡 ′ :: 𝑐′) ∈ C
if both (𝑙, 𝑡 ′ :: 𝑐′, 𝑣 ′) ∈ Binding and 𝑣 ′ aliases to 𝑣 hold, indicating
a comparison between two columns. Otherwise, 𝑡 :: 𝑐 is included
in C, validating the column 𝑡 :: 𝑐 . Ultimately, the set of checks in
C comprises each check that either validates a single column or
compares two columns.

We follow the standard algorithm that computes the iterative
post-dominance frontier of 𝑙 as its control dependencies [10]. Ac-
cording to the standard definition, 𝑐 is a post-dominance frontier
of 𝑙 if 𝑙 post-dominates one of its successors but not 𝑐 itself. In per-
forming such control flow analysis, we also consider those aborting
statements (e.g., exit and die in PHP) as an exit node in their
corresponding control flow graphs.

4.4 Discussions

4.4.1 Soundness and Precision. We employ a series of heuristic-
based rules to infer object-level authorization models. Those rules
are summarized from common coding practices, and although they
work well in practice, they are neither sound nor complete.

The foreign key analysis rules presented in Figure 8 accurately
capture the semantics of foreign keys, i.e., table columns that di-
rectly or indirectly refer to primary keys of other tables (Defini-
tion 1). The precision and soundness of foreign key analysis are
determined by the underlying alias analysis, which may produce
false positives or false negatives. However, our experiments, as
shown in Table 3, did not reveal any incorrect foreign keys (no false
positives) or any missing known foreign keys (no false negatives).

In Figure 10, the rule [User-Table] deduces user tables based
on the common design practice that user IDs must be stored in
the global SESSION variable. To distinguish from other values also
stored in SESSION, we further require that user tables must contain
a column named with the substring ‘password’, ‘passwd’, or ‘pwd’.
This restriction results in no false positives in our experiments
(Table 3). However, applications may not follow this design, leading
to potential false negatives.

The heuristics for determining status and admin columns are
based on observations in our studied applications. Consequently,
applications that deviate from these observations may experience
false positives and false negatives. For instance, developers might
use arbitrary types like INT to represent a status, which violates the
first condition for identifying status columns. Additionally, applica-
tions might permit non-admin roles to manage users or lack user
management entirely, leading to false positives and false negatives
in the discovery of admin columns, respectively. Such false positives
and false negatives will be further discussed in Section 5.1.

4.4.2 Threat Model. BolaRay detects those BOLA vulnerabilities
that violate the four types of object-level authorization models
outlined in Section 3.3. These four authorization models were devel-
oped from our empirical study of 101 known BOLA vulnerabilities.
In practice, other types of vulnerability patterns may exist, which
are beyond the detection of BolaRay.

The effectiveness of BolaRay relies on two key assumptions.
First, we presume that most functional code, specifically the SQL
statements manipulating database tables, is correct. Otherwise,
BolaRay will fail to reconstruct correct table relations and infer
authorization models based on those relations. This assumption
is reasonable because any malfunctions would likely be reported
promptly. Second, we assume that applications adhere to common
programming practices observed in our study. BolaRay follows
these practices to formulate a series of heuristic-based rules. If an
application deviates from to these practices, its BOLA vulnerabilities
may not be detected by BolaRay.

5 Evaluation

We evaluated BolaRay using 25 open-source database-backed
PHP applications (see Table 2), which include 19 applications
(from rows 3 to 21) that have been widely evaluated in previous
works [2, 8, 28, 31, 45] and 6 applications (from rows 22 to 27) from
our empirical study. These applications span various industries,
containing diverse tables and SQL statements. The experiments
were conducted on a MacBook Pro laptop equipped with an 8-core
2.0 GHz M1 Pro processor, 16 GB of memory, and MacOS Sonoma
14.4.1.

Our evaluation aims to answer the following research questions:
• RQ1. How precise is BolaRay in identifying object-level
authorization models?
• RQ2. How effective is BolaRay in detecting BOLA vulnera-
bilities?
• RQ3. How efficient is BolaRay?
• RQ4. How does BolaRay compare with other existing ap-
proach?

5.1 Identifying Authorization Models

Accurately identifying authorization models is essential for the
effectiveness of BolaRay. Table 3 outlines the counts of user tables,
foreign keys, table relations, status columns, admin columns, and
object-level authorization models inferred by BolaRay for each
application. To evaluate BolaRay ’s precision, we manually exam-
ined the generated reports. As depicted in Table 3, BolaRay cor-
rectly identifies 35 user tables (Columns 2-3) and 1,151 foreign keys
(Columns 4-5, 100 of which are explicitly declared in the schema, all
from the benchmark Rosariosis) with no false positives. We further
manually checked each table and confirmed that there were no
known false negatives. This confirms that the rules in Figure 10
and Figure 8 are effective and precise in practical scenarios. It is
noteworthy that the rule [Connect] binds a variable to a table
column with the necessary condition that the involved statements
must be executed together. This filtering strategy, inspired by [8],
did not produce false negatives in our experiments while effectively
eliminating 273 false foreign keys.

Out of the 1,099 inferred table relations (Columns 6-11), only
one false m:n relation in Scarf was reported (Column 11). This false
positive is caused by the fact that BolaRay mistakenly classified
an object table as a junction table, resulting in a false many-to-
many relation. The identification of status columns exhibited a
lower precision, with a false positive rate of 25% (Columns 12-13).
This discrepancy is attributed to the fact that some status columns
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Table 2: Statistics on Evaluation Applications.

Application
Source Code Database # SQL Queries

Description

# Files # LLOC # Tables # Columns SELECT INSERT DELETE UPDATE Total

Mybloggie-2.1.4 57 3,894 4 24 78 7 7 7 99 Content management system
Scarf-1.0 19 840 7 37 50 7 6 12 75 Conference system
Phpns-2.1.1alpha 30 2,012 13 100 68 11 9 8 96 News platform
Webid-1.2.2 239 16,304 57 367 415 83 72 197 767 Auction platform
SchoolMate-1.5.4 63 1,877 15 104 215 16 33 30 294 School management system
PhpNews-1.3.0 20 3,488 6 37 61 39 5 13 118 News platform
Timeclock-1.04 63 12,373 8 35 257 20 7 22 306 Employment management system
Hospital MS-4.0 73 1,843 11 88 54 10 3 18 85 Hospital management system
Doctor Apt-1.0.0 26 820 4 32 24 2 0 4 30 Doctor management system
Wheatblog-1.1 42 1,495 6 35 33 6 5 8 52 Content management system
PHP7-Webchess 30 3,307 7 48 63 14 12 20 109 Web game
Hocms-1.0 38 1,386 7 52 35 9 4 12 60 Home collection management system
Collabtive-3.1 74 18,152 20 141 139 20 43 35 237 Project management system
Oscommerce-2.4.2 436 25,287 51 358 374 465 190 124 1,153 Ecommerce platform
Piwigo-14.4.0 681 120,653 39 221 335 12 31 55 433 Photo management system
PhpBB-3.3.12 1,219 71,781 70 605 856 14 145 298 1,313 Online forum
SMF-2.1.4 329 87,394 73 525 745 24 229 219 1,217 Online forum
Opencart-4.0.2.3 1,005 56,785 154 937 700 173 259 138 1,270 Ecommerce platform
Zencart-2.0.1 1,312 63,107 110 896 746 319 102 103 1,270 Ecommerce platform
Odfs-1.0 44 1,734 5 35 34 8 7 15 64 Online discussion forum system
Admidio-4.1.12 241 20,659 38 366 352 40 69 79 540 Online user management system
TeamPass-3.0.0.22 156 21,558 45 331 576 147 86 195 1,004 Collaborative passwords manager
Rosariosis-8.9.4 374 36,437 92 937 1,010 29 92 88 1,219 School management system
SP Manager-4.57 1,399 163,932 29 204 303 70 44 133 550 Wordpress project management plugin
Openemr-7.0.0 795 95,373 255 3,351 1,413 162 72 262 1,909 Medical practice management system
Total 8,765 832,491 1,126 9,866 8,936 1,707 1,532 2,095 14,270

Table 3: Number of Tables and Relations.

Application

# User # Foreign # Table Relationships # Status # Admin # Ownership # Membership # Hierarchical # Status

Tables Keys 1:1 1:n m:n Columns Columns Models Models Models Models

TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP

Mybloggie-2.1.4 1 0 3 0 0 0 3 0 0 0 0 0 1 0 2 0 0 0 1 0 0 0
Scarf-1.0 1 0 7 0 0 0 3 0 1 1 1 1 1 0 2 0 1 1 4 0 0 1
Phpns-2.1.1alpha 1 0 12 0 0 0 12 0 0 0 2 0 1 0 5 4 0 0 4 0 1 0
Webid-1.2.2 2 0 72 0 1 0 70 0 0 0 11 2 1 0 12 4 0 0 65 6 18 6
SchoolMate-1.5.4 1 0 26 0 3 0 17 0 2 0 0 0 1 0 6 2 1 0 6 0 0 0
PhpNews-1.3.0 1 0 3 0 0 0 3 0 0 0 1 1 1 0 2 0 0 0 1 0 1 0
Timeclock-1.04 1 0 10 0 1 0 6 0 1 0 1 3 1 0 5 1 1 0 1 0 2 2
Hospital MS-4.0 3 0 10 0 2 0 8 0 0 0 2 0 0 0 6 2 0 0 2 0 0 0
Doctor Apt-1.0.0 1 0 2 0 0 0 2 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0
Wheatblog-1.1 1 0 2 0 0 0 2 0 0 0 2 0 1 0 1 0 0 0 0 0 1 0
PHP7-Webchess 1 0 9 0 0 0 9 0 0 0 0 2 0 0 4 0 0 0 8 0 0 3
Hocms-1.0 1 0 5 0 0 0 5 0 0 0 6 0 0 0 1 0 0 0 0 0 3 0
Collabtive-3.1 1 0 33 0 0 0 21 0 6 0 2 0 1 0 5 1 3 1 21 1 8 1
Oscommerce-2.4.2 3 0 64 0 4 0 55 0 1 0 3 0 0 0 19 0 0 0 10 0 13 2
Piwigo-14.4.0 1 0 34 0 1 0 29 0 1 0 1 0 0 0 10 0 1 0 1 0 0 0
PhpBB-3.3.12 1 0 151 0 2 0 142 0 2 0 1 1 0 0 37 8 0 0 568 118 4 0
SMF-2.1.4 1 0 127 0 3 0 114 0 3 0 0 0 1 0 37 9 3 0 196 46 0 0
Opencart-4.0.2.3 2 0 91 0 1 0 87 0 1 0 0 0 1 0 15 1 0 0 0 0 0 0
Zencart-2.0.1 2 0 91 0 3 0 82 0 1 0 0 0 0 1 22 0 1 0 15 0 0 0
Odfs-1.0 1 0 4 0 0 0 4 0 0 0 4 1 0 0 3 0 0 0 1 0 2 2
Admidio-4.1.12 1 0 39 0 0 0 39 0 0 0 1 0 1 0 18 3 0 0 8 0 2 0
TeamPass-3.0.0.22 1 0 106 0 0 0 102 0 2 0 4 0 2 1 15 4 0 0 135 7 32 0
Rosariosis-8.9.4 2 0 102 0 7 0 93 0 1 0 0 0 1 2 47 2 2 0 80 0 0 0
SP Manager-4.57 1 0 18 0 0 0 15 0 1 0 1 0 1 0 6 0 0 0 7 0 0 0
Openemr-7.0.0 3 0 130 0 0 0 124 0 1 0 7 6 1 0 36 3 0 0 68 8 34 6

Total 35 0 1,151 0 28 0 1,047 0 24 1 51 17 17 4 318 44 13 2 1,202 186 121 23

are irrelevant to authorization, such as those columns controlling
the frontend display language. Additionally, BolaRay accurately
inferred 21 admin columns (Columns 14-15), with only 4 false posi-
tives, indicating the efficacy of the [Admin-Col] rule in Figure 11.

Ultimately, BolaRay identified 1,909 accurate models with only
255 false positives (Columns 16-23). It is noteworthy that neither
user tables nor 1:n relationships, which were utilized for inferring
ownership models, yielded false positives. However, 44 ownership
models were misreported (Column 17). The reason for these dis-
crepancies is that these applications define their own authorization
models, which are inconsistent with the ownership models we
inferred. These false positives were further propagated to false hier-
archical models (Column 21), stemming from incorrect ownership
models. The false positives related to membership models (Column
19) and status models (Column 23) originated from incorrect m:n
relationships (Column 11) and incorrect status columns (Column
13), respectively.

Table 4: Results on 15 existing vulnerabilities.

Detected

CVE-2022-31295 CVE-2022-31294 CVE-2023-3063
CVE-2022-1551 CVE-2023-3303 CVE-2023-3304
HUNTR-24ae402f CVE-2023-1463 HUNTR-3bf6999c
CVE-2023-2946 CVE-2023-2945 CVE-2023-2944
CVE-2023-2942 CVE-2022-2824 HUNTR-52da52b8

5.2 Effectiveness

We evaluate the effectiveness of BolaRay in terms of its ability to
detect existing and new vulnerabilities.

5.2.1 Existing Vulnerabilities. Table 4 summarizes the results in
detecting existing vulnerabilities from our study. Out of the 101
vulnerabilities examined, 31 are PHP vulnerabilities. After exclud-
ing 16 SELECT-related cases, we are left with 15 vulnerabilities
for further analysis. BolaRay successfully identified all 15 existing
BOLA vulnerabilities across the six PHP applications analyzed in
our study, achieving a recall rate of 100%.

https://huntr.com/bounties/24ae402f-220f-41c6-962e-47c26938986e
https://huntr.com/bounties/3bf6999c-627f-4cdd-b885-206f369a82a2
https://huntr.com/bounties/52da52b8-b808-4b5d-90b1-1a6419b3ae8f
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Table 5: BOLA vulnerabilities reported by BolaRay. MOC, MMC, MHC, and MSC denote missing ownership checks, missing

membership checks, missing hierarchical checks, and missing status checks, respectively.

Application

# MOCs # MMCs # MHCs # MSCs
# Total

# CVEs
INSERT DELETE UPDATE INSERT DELETE UPDATE DELETE UPDATE INSERT UPDATE

TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP

Mybloggie-2.1.4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 3 0 1
Scarf-1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Phpns-2.1.1alpha 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3 0 3
Webid-1.2.2 0 1 7 0 8 9 0 0 0 0 0 0 3 0 0 0 17 3 0 0 35 13 8
SchoolMate-1.5.4 0 0 0 0 10 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 12 1 3
PhpNews-1.3.0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 3 1 3
Timeclock-1.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 4 0 1
Hospital MS-4.0 0 1 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 4
Doctor Apt-1.0.0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Wheatblog-1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
PHP7-Webchess 0 0 1 0 7 0 0 0 0 0 0 0 1 0 0 0 0 4 0 0 9 4 3
Hocms-1.0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 8 0 2
Collabtive-3.1 0 1 3 0 3 0 1 0 3 0 8 0 2 0 3 0 8 0 1 0 32 1 13
Oscommerce-2.4.2 0 0 0 2 0 7 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 11 0
Piwigo-14.4.0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
PhpBB-3.3.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SMF-2.1.4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2
Opencart-4.0.2.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Zencart-2.0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Odfs-1.0 2 0 2 0 5 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 13 0 4
Admidio-4.1.12 0 0 2 6 2 5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 5 11 0
TeamPass-3.0.0.22 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Rosariosis-8.9.4 0 0 2 3 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 5 3 0
SP Manager-4.57 8 0 0 0 9 0 4 0 0 0 5 0 0 0 0 0 0 0 0 0 26 0 3
Openemr-7.0.0 4 0 2 1 10 3 0 0 0 0 0 0 0 0 1 0 4 2 1 0 22 6 0
Total 14 4 23 12 67 27 5 0 3 0 13 0 10 0 9 1 45 10 4 0 193 54 52

5.2.2 New Vulnerabilities. Table 5 provides details about vulnera-
bilities reported by BolaRay. Overall, BolaRay reports a total of
247 vulnerabilities, of which 193 vulnerabilities have been manu-
ally confirmed as real vulnerabilities, resulting in a false positive
rate of 21.86% (Columns 22-23). This total includes the 15 known
vulnerabilities mentioned in table 4. Subsequently, we reported the
178 new vulnerabilities to their corresponding maintainers. To date,
155 vulnerabilities have been confirmed, with 52 CVE IDs granted.

BolaRay detects at least one BOLA vulnerability in 21 appli-
cations, except for Scarf, PhpBB, Opencart and Zencart. Upon
examining Scarf, it was discovered that all sensitive operations are
restricted to admin users, making object-level authorization models
irrelevant. Nevertheless, by effectively identifying the admin col-
umn for Scarf, as detailed in Table 3, BolaRay reports no false BOLA
vulnerabilities in this benchmark. The other three applications did
not reveal vulnerabilities because they had already implemented
proper object-level authorization checks for each object.

5.2.3 False Positives. BolaRay reports 54 false positives at a rate
of 21.86%. Through a thorough investigation, we summarize the
common causes of these false positives below:

Incorrect Status Model. There are 10 false missing status checks
(MSCs) (Column 19), all caused by incorrectly inferred status
columns, as discussed in Table 3. Such false positives can be ad-
dressed by manually annotating real status columns.

Application-level Authorization. BolaRay simplifies application-
level access control policies with the admin role, and this sim-
plification leads to 14 false positives. For example, in Admidio,
BolaRay accurately derives an ownership relationship between
users and photos, and consequently reported a missing ownership
check (MOC) when editing photos. Nevertheless, this application
does not implement object-level authorization and allows any user
with the editPhotoRight permission to edit any photo at will.
This discrepancy, in contrast to the [Own-Check] rule in Figure 11,

leads to 11 false positives (Column 23) reported by BolaRay for
this benchmark.

Column-level Authorization. BolaRay enforces object-level au-
thorization, while some applications require the authorization
model to be more finely-grained, restricting to specific columns.
The auction system, Webid, is such an application. BolaRay cor-
rectly established an ownership relationship between the user table
and the auction table, which stores auction items. Consequently,
BolaRay flagged a MOC in scenarios when updates to the column
auction::current_bid lack ownership verification. However, this
particular column records the current highest bid of auction items
which, by design, could be updated by any user, making this specific
column universally changeable. BolaRay reported 9 false positives
(Column 7) due to this discrepancy.

Limitations of TChecker. TChecker does not support variable
functions, which are commonly used for implementing callbacks
in PHP. Consequently, BolaRay reported 11 false positives in Os-
commerce because its permission-checking APIs are implemented
through variable functions. This limitation results in BolaRay ’s
inability to infer the admin column in this application.

5.2.4 Case Studies. Here we investigate three intriguing new
BOLA vulnerabilities identified by BolaRay.

CVE-2024-1693. In SP Manager, there is an ownership relation-
ship between the user table and the sp_cu_project table. How-
ever, the application only verifies ownership when deleting objects
in the sp_cu_project table, while it fails to do so during updates
to this table, allowing attackers to arbitrarily update other users’
sp_cu_project entries, thereby violating system integrity. It is
important to note that, due to the frequent updates of numerous
APIs, developers can easily overlook object-level authorization for
some APIs. This oversight undergoes the need for an automated
tool like BolaRay to systematically scan each API.
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CVE-2024-23009. The Collabtive application contains a missing

hierarchical check vulnerability, wherein upon deleting a project
folder, it only verifies the membership relationship between the
user and the project, neglecting to validate the parent-child rela-
tionship between the project and its containing folder. As a result,
attackers may delete any project folder. Such missing hierarchical

check vulnerabilities demand multiple sub-checks, all of which need
to be enforced to ensure safety.

CVE-2024-32166. In Webid, the auction table, which stores auc-
tion items, contains two status columns: closed and suspend.
These two columns collaboratively determine whether an auction
item can be purchased or not. However, Webid only checks the
closed column, ignoring the suspend column. As a result, a sus-
pended auction item can still be purchased. To avoid such vul-
nerabilities, developers need to check all required statuses for a
specific operation. BolaRay detects such vulnerabilities by enforc-
ing checks on all status columns of an object, and the missing check
of any status column will signify a report. This conservative strat-
egy guarantees safety, and we did not encounter any false positives
due to this over-approximation.

5.2.5 Responsible Disclosure. All the new vulnerabilities detected
by BolaRay can lead to serious consequences, including data loss,
data tampering, and system instability. Recognizing the potential
risks, we took the responsibility of disclosing all newly identified
vulnerabilities in 25 database-backed applications, with detailed
reports. We reached out to the corresponding organizations to re-
port the total new vulnerabilities through their dedicated email
addresses and security vulnerability reporting forms. Adhering to
responsible disclosure practices, wewill refrain from publicly releas-
ing any unresolved vulnerabilities until they have been addressed
by developers. As of now, 155 of the identified vulnerabilities have
either been confirmed or resolved, and 52 CVE identifiers have been
assigned to these reports.

5.3 Efficiency

Figure 13 showcases the times required to analyze the 25 applica-
tions listed in Table 2. Among them, SP Manager (a WordPress
plugin) stands out for taking the longest time, amounting to 427.5
seconds. This underscores the efficiency of BolaRay in conducting
its analyses. By integrating the data from Figure 13 and Table 2,
a clear positive correlation emerges between the overall analysis
time and the size of the codebase.

This analysis time can be divided into two main components:
the time devoted to inferring authorization models and the time
allocated to detecting BOLA vulnerabilities. Notably, a majority of
the time is consumed by the model inference process. It is crucial to
emphasize that the duration of model inference is directly related to
the number of tables and SQL statements in the application, rather
than its sheer volume of code. For instance, SP Manager, despite
having a larger codebase, takes less time in model inference than
Openemr, owing to its fewer table relations. This observation aligns
with our expectations, as the process of model inference primarily
involves analyzing SQL queries to infer table relationships.
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Figure 13: Analysis time (s) of BolaRay

Table 6: Ownership Models and BOLA vulnerabilities re-

ported byMace.

Application

# Ownership # MOCs

# CVEs

Models DELETE UPDATE Total

TP FP TP FP TP FP TP FP

Mybloggie-2.1.4 2 0 0 2 0 2 0 4 0
Scarf-1.0 1 0 0 0 0 0 0 0 0
Phpns-2.1.1alpha 5 4 0 0 1 0 1 0 1
Webid-1.2.2 10 2 0 0 1 0 1 0 1
SchoolMate-1.5.4 1 0 0 0 0 0 0 0 0
PhpNews-1.3.0 2 0 0 0 0 1 0 1 0
Timeclock-1.04 2 1 0 0 0 0 0 0 0
Hospital MS-4.0 4 2 2 0 3 0 5 0 4
Doctor Apt-1.0.0 1 0 0 0 0 0 0 0 0
Wheatblog-1.1 1 0 0 0 0 0 0 0 0
PHP7-Webchess 3 0 1 0 4 0 5 0 2
Hocms-1.0 1 0 0 0 0 0 0 0 0
Collabtive-3.1 4 5 3 0 3 0 6 0 4
Oscommerce-2.4.2 10 0 0 2 0 7 0 9 0
Piwigo-14.4.0 2 0 0 0 1 0 1 0 0
PhpBB-3.3.12 3 1 0 0 0 0 0 0 0
SMF-2.1.4 1 0 0 0 0 0 0 0 0
Opencart-4.0.2.3 3 0 0 0 0 0 0 0 0
Zencart-2.0.1 1 0 0 0 0 0 0 0 0
Odfs-1.0 1 0 0 0 0 0 0 0 0
Admidio-4.1.12 0 0 0 0 0 0 0 0 0
TeamPass-3.0.0.22 11 4 0 0 0 0 0 0 0
Rosariosis-8.9.4 2 0 0 0 0 0 0 0 0
SP Manager-4.57 2 0 0 0 0 0 0 0 0
Openemr-7.0.0 10 0 1 0 5 0 6 0 0

Total 83 19 7 4 18 10 25 14 12

5.4 Comparison

Mace [28] is the most closely relevant work to BolaRay. This tool
relies on the manual annotation of user variables to identify own-
ership relationships, where the target table of an INSERT statement
is owned by the inserted user variable (if it exists). Consequently,
Mace checks whether the target tables of any UPDATE or DELETE
statements enforce ownership checks in their WHERE clauses. Al-
though Mace is closed-source, we reproduced the tool for a direct
comparison with BolaRay. Instead of manually specifying user
variables forMace, we used the user variables inferred by BolaRay.

The results of this comparison are summarized in Table 6. Mace
correctly identified 83 true ownership models and 25 true BOLA
vulnerabilities for 7 applications, all of which were also disclosed
by BolaRay. However,Macemissed the rest 235 ownership models
and 79 MOC vulnerabilities reported by BolaRay because it identi-
fies ownership relation only from INSERT statements. In contrast,
BolaRay analyzes aliases together with all forms of SQL statements
to infer such relationship.

Mace reported 19 false ownership models and 14 false vulnera-
bilities, with 15 of the false ownership models and 10 of the false
vulnerabilities also being reported by BolaRay. The additional
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4 false ownership models occurred because Mace fails to recog-
nize junction tables, which BolaRay can handle. This difference in
capability leads to discrepancies in analyzing database table rela-
tionships, further affecting the accuracy of inferred authorization
models. Moreover, Mace reported 4 more false vulnerabilities than
BolaRay. This because Mace only verifies checks in the WHERE
clauses of SQL statements, whereas BolaRay also considers checks
in conditional branches.

5.5 Limitations and Future work

Although effective in practice, BolaRay has the following limita-
tions:

• Manual DAL Specifications. Currently, BolaRay requires
manual annotation of DAL specifications to detail how SQL
queries are encapsulated in framework APIs. On average, we
need to write 13 lines of specifications per API. Although
this is a one-time effort, it is considered a barrier to adopting
the tool for new applications.
• Generalizability. BolaRay supports PHP applications; how-
ever, the approach is suitable for general database-backed
applications. The rules developed for inferring authorization
models and applying authorization checks (Figure 8 to Fig-
ure 11) can be readily implemented in a multi-language code
analysis engine like CodeQL, and applied to applications
written in other languages.
• SELECT Statements. BolaRay does not consider SELECT state-
ments as sensitive operations, meaning it cannot detect
BOLA vulnerabilities causing sensitive information leakage.
This limitation is also present in all existing static detection
tools [7, 9, 12–14, 28, 30] for BOLA vulnerabilities. Deter-
mining which data should be classified as sensitive in an
application is a challenging topic worthy of further investi-
gation [28].
• Incorrect object-level authorization checks. We developed Bo-
laRay based on the finding that all studied BOLA vulner-
abilities were caused by missing object-level checks. Thus,
BolaRay is not designed for detecting those incorrect object-
level authorization checks against a wrong variable, which
are rare in practice.

In the future, we plan to overcome some of the limitations by utiliz-
ing large language models to automatically generate DAL specifica-
tions and identify sensitive data for handling SELECT statements.

6 Related Work

There have been a number of static tools capable of identify-
ing BOLA vulnerabilities, including Waler [12], SPACE [30],
ANOVUL [13], Cancheck [7], UrFlow [9], and FINAD [14]. These
tools require themanual provision of authorizationmodels and then
apply various static analysis techniques, such as model checking
and symbolic execution, to identify flaws in authorization imple-
mentation. To express the underlying authorization model, different
specifications were proposed. For instance,Waler uses invariant
variables, UrFlow employs SQL query constraints, and FINAD
utilizes activity flow graphs to annotate authorization rules. In con-
trast, BolaRay automatically infers authorization models, making

it distinctively innovative. The most closely relevant work to Bo-
laRay is Mace [28], which assumes that an ownership relation
exists between a user and a table as long as the INSERT statement
of a table contains a user ID. UnlikeMace, our approach utilizes all
types of SQL statements and expands the concept of ownership to
include three additional authorization models.

Dynamic tools [20–22, 27, 38, 40, 46, 55] for BOLA vulnerabil-
ity detection focus on identifying tamperable IDs and vulnerabil-
ity triggers. For example, Authscope [55] analyzes user requests
to identify tamperable IDs and examines responses to determine
whether vulnerabilities are triggered. The effectiveness of these
efforts relies on the ability to trigger as many code paths as possible
through comprehensive requests.

A number of dynamic defense approaches have been proposed
to prevent attacks that exploit BOLA vulnerabilities at runtime.
FlowWatcher [29] detects violations of object-level authoriza-
tion models at the HTTP proxy level. Conversely, SafeD [11],
CLAMP [37], and Nemesis [26] focus on identifying these viola-
tions within the SQL server environment. All of these works rely on
manual descriptions of object-level authorization models. BolaRay
can enhance these existing methods by automatically inferring
object-level authorization models.

General access control vulnerabilities have been studied exten-
sively in the literature. AutoISES [44] statically infers security
specifications of Linux systems by analyzing the correlation be-
tween data structure accesses and security checks. PeX [53] detects
access vulnerabilities in the Linux kernel using a crafted indirect
call analysis to associate permission checks with privileged func-
tions.ACHyb [15] enhances the precision of PeX through combined
static-dynamic analysis. Sun et al. [43] detect access control vul-
nerabilities in web applications by first constructing a sitemap for
different roles, then checking whether accesses from unprivileged
pages can successfully reach privileged pages. RoleCast [41] pro-
poses a role-specific consistency analysis to detect inconsistent
authorization checks in web applications.MPChecker [24] auto-
matically identifies privileged operations in distributed systems by
inferring user- and system-related variables via log-based analysis,
then checks whether the privileged operations are guarded by per-
mission checks. Compared to the above works, BolaRay targets
the more granular BOLA vulnerabilities.

There have been numerous empirical studies targeting differ-
ent issues in database-backed applications, including performance
bugs [23, 51] and data constraint bugs [5, 16, 50]. To the best of our
knowledge, this is the first paper to conduct an in-depth study of
BOLA vulnerabilities in such systems.

7 Conclusion

We conducted the first in-depth study on BOLA vulnerabilities in
database-backed applications and developed BolaRay, a novel tool
for detecting such vulnerabilities. The key idea behind BolaRay
is the use of a combined SQL and static analysis to automatically
infer object-level authorization models. Our evaluation of BolaRay
encompassed 25 popular database-backed applications, revealing
178 new critical vulnerabilities. Notably, 155 of these vulnerabilities
have been confirmed, and 52 of them are documented with CVE
identifiers.
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