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Abstract—Web frameworks play an important role in modern
web applications, providing a wide range of configurations
to streamline the development process. However, the intricate
semantics, facilitated by framework configurations, present sub-
stantial challenges when conducting static analyses on web
applications. To mitigate this issue, existing approaches resort to
manually modeling framework semantics for static analysis tools.
Unfortunately, these manual works are both time-consuming and
error-prone, given the multitude of web frameworks and their
frequent updates.

In this paper, we introduce the first automated method for
inferring web framework semantics. Our approach automatically
deduces framework specifications by mutating configurations. We
have developed a prototype tool called AUTOWEB and performed
extensive experiments on three popular Java web frameworks.
Empirical results demonstrate that AUTOWEB is comparable to
those manual approaches in terms of precision, obtaining a false
negative rate of 8.2% with no false positives.

Index Terms—static analysis, framework modeling, web frame-
work, Java

I. INTRODUCTION

Modern web applications are commonly built on top of
web frameworks. Those frameworks (e.g., Spring [1] and
Spring Boot [2]) offer high-level abstractions for common
web tasks, thereby greatly simplifying the development pro-
cess. For instance, many frameworks provide concepts such
as controllers in the popular model-view-controller (MVC)
design pattern: developers can simply declare handler methods
for a particular URL without knowing the intricate request
dispatching mechanism, and the framework is responsible for
processing incoming requests and dispatch them to corre-
sponding handlers.

To effectively analyze web applications, it is crucial to
precisely model the semantics of their underlying frameworks,
representing the possible frameworks behaviors at runtime.
Otherwise, many existing static analyses become inapplicable.
For instance, web applications are driven by frameworks to
interact with user requests, and there is no main method
to start with. Furthermore, existing static analyses often fail
to capture the dynamically introduced points-to relations and
call relations that arise from dependence injection and dy-
namic dispatching mechanisms within frameworks, resulting
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in unsound and imprecise results. Unfortunately, frameworks
are notoriously hard to analyze statically. They often employ
hard-to-analyze dynamic patterns (implemented via reflection)
to interact with application code, and their concrete semantics
are customized by the application via configuration files or
annotations. It is a daunting task, if not impossible, to auto-
matically analyze frameworks with good precision.

In practice, researchers resort to manually modeling frame-
work semantics to analyze web applications. Framework fea-
tures were embedded as hard-coded elements in the anal-
ysis implementation [3], [4], [5]. In addition, researchers
proposed various more general solutions to specify frame-
work semantics, effectively modeling behaviors in given con-
figurations [6], [7]. For instance, IBM’s F4F [6] defined
the Web Application Framework Language (WAFL) to ex-
press framework-related behaviors of web applications, where
WAFL specifications are generated by hand-crafted generators
(one for each framework). JackEE [7] declares framework-
related behaviors using Datalog rules, effectively mapping
framework configurations to static relations, which can be
processed by the Doop [8] analysis engine. Nevertheless,
those existing approaches still need manual efforts and can be
labor-intensive and error-prone, particularly when frameworks
undergo frequent updates.

This paper presents an automatic method for inferring web
framework semantics. To the best of our knowledge, this is
the first approach of such an attempt. Since it is generally
infeasible to directly deduce the concrete semantics by ana-
lyzing the complex implementation details of web frameworks,
we do not consider framework-specific concepts such as filters
and controllers. Instead, we focus our analysis on the relations
between application objects or methods, which are framework-
introduced but commonly required by static analyses, i.e.,
entry points, points-to relations, and call relations.1 Previous
work [9], [10] has also shown that the above relations are
crucial for the static analysis of web applications. Web frame-
works offer rich semantics that are configured with hundreds of
different parameters, and our goal is to automatically deduce
the semantics under given configurations, i.e., demystifying

1Techniques described in this paper are applicable to infer other user-
defined relations.



how entry methods and call/points-to relations are introduced
by frameworks using particular configuration parameters. The
framework semantics are abstracted as mappings from config-
uration parameter sets to relation types, referred to as spec-
ification in this paper. Specifications are framework-related,
yet application-independent, and can be applied to specific
applications to model framework semantics.

Based on the observation that a framework-introduced re-
lation is declared by the minimal sufficient and necessary set
(MSNS) to trigger the relation, which is the set of minimum
relation-triggering configuration parameters, we propose a
mutation-based approach to identifying the MSNS for each
relation. Specifically, given an application program construct
P with framework-introduced relation R, our approach first
identifies the necessary condition of relation R by removing
configuration parameters from P until R cannot be triggered
at runtime. Then, new configuration parameters (mutated from
identified necessary conditions) are introduced to further verify
that the set of necessary configuration parameters is sufficient
to trigger relation R.

We develop a prototype tool, AUTOWEB, to demon-
strate the effectiveness of our approach. AUTOWEB observes
framework-introduced relations during execution, then mutates
configuration parameters to identify the MSNS for a relation.
We have experimented with AUTOWEB on three popular
Java web application frameworks, namely Servlet, Spring, and
Apache Struts2. Experimental results demonstrated that AU-
TOWEB can automatically generate specifications as precise
as the state-of-the-art manual approaches. To summarize, this
paper makes the following contributions:

• We propose the first automated method to infer web
framework semantics, by identifying the MSNS for
framework-introduced relations.

• We develop AUTOWEB, utilizing a novel mutation-based
approach to automatically deduce the framework specifi-
cations.

• We experimented AUTOWEB on three popular Java web
frameworks, and experimental results demonstrated that
the inferred specifications are comparable with hand-
written specifications over precision and soundness.

The rest of the paper is organized as follows. Section II
motivates our approach with an example, and Section III de-
scribes AUTOWEB in detail. We evaluate the tool AUTOWEB
in Section IV. Section V reviews related work and Section VI
concludes this paper.

II. MOTIVATION

In this section, we aim to introduce the dynamic relations
facilitated by web frameworks, illustrating their impact on
static analysis through an example.

A. Motivating Example

Figure 1 gives an example application built on top of
the Spring framework. The execution flows for two URLs
are illustrated in Figure 2. In this example, a SQL in-
jection vulnerability exists at line 49. This vulnerability

1 @Controller
2 public class Controller1 {
3 @Autowired
4 @Qualifier("service2")
5 ServiceInterface srv;
6

7 @GetMapping("/root1/path1")
8 public String handle1(HttpServletRequest request){
9 ...

10 data = request.getParameter("name");
11 srv.service(data);
12 ...
13 }
14 }
15

16 @Controller
17 @RequestMapping("/root2")
18 public class Controller2 {
19 @RequestMapping("/path2")
20 public String handle2(HttpServletRequest request){
21 ...
22 data = request.getParameter("name");
23 sql = "update users set hit=hit+1 where

name='"+data+"'";↪→
24 statement.executeUpdate(sql);
25 ...
26 }
27 }
28

29 public class Filter1 extends OncePerRequestFilter{
30 protected void doFilterInternal(HttpServletRequest

request, HttpServletResponse response,
FilterChain chain){

↪→
↪→

31 if(validateSqlCharactor(request)) // Santitizer
32 chain.doFilter(request, response);
33 ...
34 }
35 }
36

37 @Service("service1")
38 public class ServiceImpl1 implements ServiceInterface{
39 public String service(String name) {
40 // safe SQL operation
41 ...}
42 }
43

44 @Service("service2")
45 public class ServiceImpl2 implements ServiceInterface{
46 public String service(String name) {
47 ...
48 String sql = "select * from users where

name='"+name+"'";↪→
49 stmt.executeQuery(sql); // SQL injection
50 ...}
51 }

(a) Application code.

1 <!--web.xml configuration file-->
2 <web-app>
3 <filter>
4 <filter-name> myFilter </filter-name>
5 <filter-class> Filter1 </filter-class>
6 </filter>
7 <filter-mapping>
8 <filter-name> myFilter </filter-name>
9 <url-pattern> /root2/* </url-pattern>

10 </filter-mapping>
11 </web-app>

(b) XML configuration file. “myFilter” is the alias of the class
“Filter1” in Figure 1a.

Fig. 1: Motivating example of a Spring-based application.
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Fig. 2: Execution flow of the example in Figure 1. Solid lines indicate direct call edges, while dotted lines denote indirect
calls. The content above the solid line represents the callsite, with the line number appearing to the left of the colon.

occurs because Controller1.handle1()(line 11) in-
vokes ServiceImpl2.service() (line 46), which di-
rectly passes input data to a SQL query (line 49). Note that
Controller2.handle2 (line 20) also passes input data
to SQL query statements (line 24). However, it is considered
safe since the input request is sanitized by Filter1 at line
31, before being processed by the handler.

The SQL injection in the above example can be detected
via a classical taint analysis which computes whether the
parameters of SQL queries are input data without being
sanitized or not. However, without awareness of framework-
introduced relations, traditional static taint analyses often fail
to recognize the execution flow as in Figure 2, resulting in
ineffective analysis results.

B. Framework-introduced Relations

1) Entry Points: Static analysis including taint anal-
ysis typically process on a call graph consisting of
all reachable methods from entry points. In stand-
alone Java applications, the main method is consid-
ered the entry point, whereas in web applications, entry
points are often the request-handling methods directly in-
voked by frameworks. Controller1.handle1() and
Filter1.doFilterInternal() are entry points in our
example.

Entry points are defined by annotating classes and
methods via Java annotations or XML configurations. As
shown in Figure 1a, the annotation @Controller de-
fines entry classes, and the annotation @GetMapping and
@RequestMapping declare entry methods. Note that the
annotation @GetMapping and @RequestMapping also
have parameter values to specify corresponding request URLs.
Additionally, entry points can also be declared via XML
configurations as shown in Figure 1b.

2) Points-to Relation: Points-to relations denote the set
of heap objects referred by a pointer variable. Similar to
call relations, points-to relations can be dynamically intro-
duced by frameworks: frameworks can create objects outside
the application and inject their managed objects into par-
ticular field references. In our example, an object of type
ServiceImpl2 is managed by the framework and injected
into field reference Controller1.srv. Such framework-
introduced points-to relations cannot be computed by exist-
ing points-to analyses. Consequently, a call graph algorithm
based on points-to analysis will miss the call relation from
line 11 to ServiceImpl2.service(), resulting in false

negatives. On the other hand, a CHA-based call graph con-
struction algorithm will introduce a spurious call relation to
ServiceImpl1.service(), resulting in false positives.

Points-to relations are specified by annotating fields
and classes of injected objects. In our example, field
Controller1.srv is annotated with @Autowired (line
3) and @Qualifier (line 4), indicating that the field is
injected with framework-managed object service2. The
@Service annotation at line 37 and 44 suggest that object
service1 and service2 are managed by the framework,
with type ServiceImpl1 and ServiceImpl2, respec-
tively. Note that the parameter value of @Qualifier matches
with that of @Service, indicating that object service2 is
injected into field Controller1.srv.

3) Call Relation: Call relations can be statically computed
using techniques such as class hierarchy analysis (CHA) [11]
or points-to analysis [12], to establish connections between
invocation sites and corresponding callee methods. Neverthe-
less, these analyses are unable to handle indirect call relations
introduced by frameworks. In such cases, applications invoke
framework APIs, which, in turn, call back into application
methods, making it challenging for static analysis techniques
to accurately track and resolve these dynamic interactions.

Indirect call relations can be specified in various ways.
In our example, the method Controller2.handle2() is
indirectly called by chain.doFilter() at line 32 because
it handles the URL /root2/path2 which matches with the
URL /root2/* in the XML configuration for filter-mapping
(Figure 1b).

Objective. The framework-introduced relations mentioned
above are specific because they are tied to a particular appli-
cation. Our objective is to automatically extract the general
framework semantics (e.g., the annotations, @Controller
and @GetMapping, together specify an entry method), which
can be leveraged by a static analysis tool to analyze a wide
range of applications that use similar annotations. Alterna-
tively, we can manually produce specifications for frameworks,
one by one. Nonetheless, such manual work can be error-prone
and labor-intensive.

III. METHODOLOGY

We present AUTOWEB to infer framework-introduced rela-
tions for given configurations. The key idea of AUTOWEB is to
automatically identify the minimal sufficient and necessary set
(MSNS) for a relation by mutating configurations. In practice,
AUTOWEB can run on a set of sample applications to generate
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framework specifications and the generated specifications can
be used in analyzing other web applications.
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Fig. 3: Overview of AUTOWEB. Black solid lines depict the
workflow, while gray dotted lines indicate a singular choice.

Figure 3 overviews AUTOWEB. The input is a runnable
web application, and we partition it into two distinct logical
modules: configurations and others in the input application.

1) The input application is firstly instrumented and traced
to acquire the initial execution log using the original
configurations. This step aims to observe relations in-
cluding entry points and call/points-to relations.

2) Mutated configurations are generated by removing or
adding configuration parameters from the original con-
figurations. The MSNS for each relation can be iden-
tified by comparing the dynamic relations of different
mutations. The application runs using mutated configu-
rations in this step.

3) Finally, the concrete relation and configuration parame-
ters are symbolized to generate specifications that map
each relation type to the configuration set.

Next, we will elaborate on each step using the example in
Figure 1.

A. Observing Relations

This step aims to collect the concrete framework-introduced
relations from the initial execution information. In the Runtime
Monitor component, Javaassist [13], [14], [15] is employed to
instrument the input application, modifying its Java bytecode
before class loading. To capture entry point/call relations, we
insert logging statements before and after each method call,
as well as at the entry and exit of each method. We log field
read statements for points-to relations. Additionally, the entry
and exit of the request handling methods of web containers
(e.g., Apache Tomcat [16]) are also logged to track coming
requests. These request sequences will later be used to interact
with mutated applications.

1 28⃝[Req]/root1/path1
2 28⃝[mtd]Controller1.handle1(...)
3 ...
4 28⃝[fieldRead]Controller1.srv:ServiceImpl2
5 28⃝[callsite]line:11
6 28⃝[mtd]ServiceImpl2.service(...)

7 ...
8 28⃝[mtdEnd]ServiceImpl2.service(...)
9 28⃝[returnSite]line:11

10 28⃝[mtdEnd]Controller1.handle1(...)
11 28⃝[ReqEnd]/root1/path1
12 27⃝[Req]/root2/path2
13 27⃝[mtd]Filter1.doFilterInternal(...)
14 ...
15 27⃝[callsite]line:32
16 27⃝[mtd]Controller2.handle2(...)
17 ...
18 27⃝[mtdEnd]Controller2.handle2(...)
19 27⃝[returnSite]line:32
20 27⃝[mtdEnd]Filter1.doFilterInternal(...)
21 27⃝[ReqEnd]/root2/path2

Listing 1: Simplified runtime logs of the example in Figure 1.

As web applications handle multiple user requests con-
currently, each log statement includes its thread identifier.
Relations including entry methods and call/points-to relations
can be easily deduced from execution logs within the same
thread, as follows.

Ruleentry : Method m is an entry method if there is a log
instance “[mtd] m” immediately following “[Req]”.
Rulecall : Method m is called directly or indirectly at call site
c if there is a log instance “[mtd] m” immediately following
“[callsite] c”.
Ruleptsto: Field f references to an object of type t if there
is a log instance “[fieldRead] f t”.

Listing 1 shows the simplified execution logs of our mo-
tivating example. The logs are grouped by thread id 28⃝ and
27⃝, triggered by the coming request “/root1/path1” (line 1–11)
and ends with the log instance “/root2/path2” (line 12–21),
respectively.

The execution logs precisely capture all triggered re-
lations. To focus solely on relations introduced by the
framework, we exclude relations that can already be com-
puted by existing static analyses. In Listing 1, line 2 and
line 13 confirm that Controller1.handle1 and Filt-
er1.doFilterInternal are entry methods (Ruleentry ).
Lines 15–16 suggest that Controller2.handle2 is in-
directly invoked at line 32 of application code in Fig-
ure 1 by the invocation doFilter (Rulecall ). Line 4 states
that field Controller1.srv refers to an object of type
ServiceImpl2 (Ruleptsto). Column 2 in Table I shows the
set of concrete relations.

B. Mutating Configurations

After step 1, we observed the set of dynamically triggered
concrete relations. Given a framework-introduced relation R,
we try to identify the MSNS S for R, i.e., the minimum set of
configuration parameters triggering R. To this end, we mutate
configuration parameters based on the following guidelines.
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TABLE I: Observed relations and corresponding configurations.

Relation Type Concrete Relation R Minimal Sufficient and Necessary Set S

Entry point entry : Controller1.handle1 {@Controller
∏
Controller1, @GetMapping

∏
handle1}

entry : Filter1.doFilterInternal {@filter
∏
Filter1,Filter1⊴ . . . , doFilterInternal⊴ . . . }

Points-to Controller1.srv:ServiceImpl2 {@Autowired
∏
srv, @Qualifier

∏
srv, @Service

∏
ServiceImpl2}

Call relation 32:Controller2.handle2 {API:doFilter, C32/m32 ⊴ . . ., @filter
∏

C32, S
∏

{Controller2,handle2} }

Necessity: Configuration parameter C is a necessary condi-
tion of R, i.e., C ∈ S, if the resulting effect of removing
C is that R is not triggered, while other relations remain
unaffected.
Sufficiency: The configuration set S is sufficient to trigger
R, if a mutated configuration set S ′ can trigger a correspond-
ingly mutated relation R′.

Hence, our approach firstly identifies necessary conditions
for relation R by removing each configuration parameter one
by one until R cannot be triggered. Next, the set of necessary
conditions is mutated to further verify whether it is sufficient
to trigger a correspondingly mutated relation R′.

In processing relation R, we only need to consider config-
urations related to R, which is the set of Java annotations or
XML attributes attached to related program constructs of R.
Hereafter, we use the notation S

∏
p to denote configurations

S on program construct p. Entry point relation entry : C.m
involves configurations S

∏
{C,m}, where C.m represents the

entry method m inside class C; points-to relation f : C relates
to configurations S

∏
{f, C}, where f and C are the field and

its type respectively; and Call relation c : C.m, denoting that
method m inside class C is invoked at callsite c, involves
configurations S

∏
{c, Cc,mc, C,m}, where Cc and mc refer

to the containing class and containing method of callsite c,
respectively. The types of configuration parameters include
Java annotations and XML configuration files. In addition,
we also consider extensions of framework APIs including
sub-typing and method overriding as special configurations,
denoted by the notation ⊴.

TABLE II: Mutation strategy.

original relation mutated relation
S
∏

{C,m} =⇒ entry : C.m S
∏

{C′,m′} =⇒ entry : C′.m′

S
∏

{f, C} =⇒ f : C S
∏

{f ′, C′} =⇒ f ′ : C′

S
∏

{c, Cc,mc, C,m} S
∏

{c′, Cc′ ,mc′ , C
′,m′}

=⇒ c : C.m =⇒ c′ : C′.m′

Table II presents the mutation strategy to verify sufficient
conditions. In summary, original program constructs p related
to relation R are duplicated and renamed to p′. Configurations
S on p are moved to the mutated construct p′ instead. Each
mutation action generates a mutated configuration set, which
is used to replace original configurations and then executed
to verify whether a correspondingly mutated relation R′ on p′

can be triggered or not.
Next, we elaborate on how the MSNS for distinct relations

are identified for our motivating example. The result for each
observed relation is shown in Column 3 of Table I.

a) Entry point: In Figure 1, Controller1.handle1
and Filter1.doFilterInternal are entry
points. Let us consider the concrete relation
entry : Controller1.handle1. There are two related

configuration parameters @Controller
∏
Controller1

and @GetMapping
∏
handle1. Both parameters are

necessary since the relation cannot be triggered after
removing either of them. Furthermore, a new relation
entry : Controller1’.handle1’ can be triggered by
applying our mutation strategy in Table II. As a result, we have
identified the MSNS {@Controller

∏
Controller1,

@GetMapping
∏
handle1} for this concrete relation. The

entry method Filter1.doFilterInternal involves the
XML configuration on class Filter1 (filter

∏
Filter1)

and two additional configurations derived from API
extension, sub-typing from OncePerRequestFilter
(Filter1⊴ . . . ) and overriding of method
doFilterInternal (doFilterInternal⊴ . . . ),
which form the MSNS for this relation.

b) Points-to relation: We observe a points-to relation
srv:ServiceImpl2 in our motivating example. There are
three related configuration parameters: @Autowired

∏
srv,

@Qualifier
∏
srv, and @Service

∏
ServiceImpl2.

Removing either annotation will disable the points-to relation.
To mutate the set of configurations, we introduce a

new class ServiceImpl2’ and a new field srv’, du-
plicated from ServiceImpl and srv, respectively. Next,
the set of configurations is removed from the original pro-
gram constructs and applied to the newly duplicated field
and class instead. In another word, the configuration set
S
∏
{srv, ServiceImpl2} is mutated to another set

S
∏
{srv’, ServiceImpl2’}. The mutated application

will trigger the points-to relation srv’:ServiceImpl2’.
Hence, the three configuration parameters consist of the min-
imal sufficient and necessary set for the points-to relation
srv:ServiceImpl2.

c) Call relation: Call relation preserves the semantics of
indirectly invoking application methods via framework API.
That is, application invokes framework APIs, which in turn,
call back into application methods. For this, we consider con-
figuration parameters on the callsite (including its containing
class and method), as well as configuration parameters on the
invoked method (including its containing class).

For concrete call relation 32:Controller2.handle2
in our example, the callsite (line 32 in Figure 1) is
constrained with the following configurations: line 32 in-
vokes API doFilter (API:doFilter), m32 derived from
doFilterInternal (m32 ⊴ . . . , C32 (class Filter1)
derived from OncePerRequestFilter (C32 ⊴ . . . ), and
C32 configured as filter in XML (filter

∏
C32). These

configurations, together with configurations on the invoking
method (S

∏
{Controller2, handle2}) are the corre-

sponding minimal sufficient and necessary set.
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TABLE III: Inferred Specifications of the motivating example shown in Figure 1.

Relation type Relation R Specification (content for relation type)

Entry point entry : C.m
{@Controller

∏
C, @GetMapping

∏
m }

{@filter
∏

C, C ⊴ OncePerRequestFilter, m ⊴ doFilterInternal }
Points-to f : C {@Autowired

∏
f, @Qualifier(S1)

∏
f, @Service(S2)

∏
C, S1 ∼ S2}

Call relation c : C.m {API:doFilter, @filter
∏

Cc, C/m ⊴ . . . , @Controller
∏

C, @RequestMapping
∏

m }

C. Inferring Specifications

Until this point, we have obtained a set of relations with
their corresponding minimal sufficient and necessary sets.
However, the relations and configurations are concrete: they
are tied to concrete program constructs and the value (if
any) of a configuration parameter is a constant string. In
this step, we generalize the relation R and its corresponding
configurations to abstract program constructs, according to the
following rule.

Generalization: Concrete application program constructs
(classes, methods, and fields) are generalized to abstract pro-
gram constructs. The constant string parameters of a config-
uration are generalized to a symbolic string with constraints
matching the string to the name of a program construct, or
to the parameter of another configuration. Symbolic strings
with no matching constraints can be discarded.

Table III summarizes the specifications inferred from our
example in Figure 1. The specifications look similar to the
minimal sufficient and necessary set for a concrete relation,
with concrete program constructs and constant configuration
parameters symbolized.

As shown in Table III, we have inferred two rules
for entry point relation. The first rule states that the two
configurations @Controller

∏
C and @GetMapping

∏
m

collectively declare that C.m is an entry method, regard-
less of their parameters. The second rule indicates that
method C.m is an entry method if C.m extends from
OncePerRequestFilter.doFilterInternal and C
is configured as a filter by @filter

∏
C. Note that in

this rule, we only generalize application classes and meth-
ods while preserving concrete framework constructs. In the
third rule, points-to relation f : C holds under the fol-
lowing conditions: f is annotated with @Autowired and
@Qualifier(S1), C is annotated with @Service(S2), and
the two symbolic string parameter S1 and S2 match with
each other (S1 ∼ S2). Here S1 and S2 are parameters of
configuration @Qualifier and @Service, respectively.
The last rule indicates that if c invokes API doFilter in
a method derived from doFilterInternal (C/m ⊴ . . . ),
it may indirectly invoke C.m if C.m is a request handler
(@Controller

∏
C, @RequestMapping

∏
m) and Cc is

a filter (@filter
∏

Cc) with parameter matching the name
of C (S ∼ C.name).

a) Limitations: Points-to/Call relation connects a field-
/callsite to corresponding class/methods. The connection
between distinct program constructs are often indicated
by their configuration parameters, where the parame-
ter may match with another parameter or with the
name of a program construct. For the points-to re-

lation srv:ServiceImpl2 in our example, the pa-
rameter of configuration @Qualifer("service2") on
field srv matches with the parameter of configuration
@Service("service2") on class ServiceImpl2.

However, it is often challenging to statically deter-
mine whether a parameter matches another due to the
flexibility provided by frameworks. Parameters can be
configured using options such as regular expressions or
string manipulation operations. For instance, the call re-
lation 32:Controller2.handle2 happens because the
URL processed by the containing class of line 32
(class MyFilter) matches with the URL handled by
Controller2.handle2. However, the URL processed by
MyFilter is configured as a regular expression /root/*.
Moreover, we need to join parameters of the two configura-
tions @RequestMapping(/root2) and @RequestMap-
ping(/path2) together to construct the URL handled by
method Controller.handle2. It is rather challenging to
recognize the above intricate connection automatically, and
our approach will discard the matching constraints between
the two URL parameters.

IV. EVALUATION

A. Experimental Setup

Implementation We implemented a prototype that includes
all the components as depicted in Figure 3, and took the
benchmarks as inputs to generate framework specifications.
Additionally, we employed the specifications crafted by AU-
TOWEB within JackEE, a web application analysis engine on
top of Doop [8] for static program scrutiny.

Platform. The experiments of inferring framework spec-
ifications were conducted on an Intel Core(TM) i5-4590
(3.3GHz) laptop with 32 GB of RAM, running the Windows
10 Professional version.

Benchmarks. We experimented AUTOWEB on three popu-
lar web application frameworks: Servlet [33], Spring(including
Spring [1] and Spring-boot [2]), and Apache Struts2 [34]. Our
experimental benchmarks comprise two parts.

• The 16 open-source web applications listed in Table IV
encompass diverse open platforms, founded on any of
the three aforementioned frameworks, various applica-
tion categories (such as blogging systems and e-shops),
and star ratings. This benchmark spans a variety of
applications, blending both popular and less-known ones,
complex and straightforward structures.

• The 8 web applications from JackEE, which are sug-
gested by experts or top-popularity representatives of
major classes of enterprise applications. One is free-
binary-only, and the others are open-source.
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TABLE IV: Details of collected open-source benchmarks and runtime information.

ID Benchmark
Properties Instrument Mutation Inferring

Application
Classes

Total
Classes Stars Forks Frameworks Log

Size(M)
Mutation
Number

Run
Success % Recall %

1 community [17] 94 19544 2.3k 739 Servlet, Spring 47.6 167 86.75% 90.00%
2 halo [18] 425 45359 22.1k 7.5k Servlet, Spring 12.5 398 69.41% 94.44%
3 iCloud [19] 22 9498 183 115 Servlet, Spring, Struts2 0.5 242 96.61% 100.00%
4 jpetstore [20] 24 6847 521 745 Servlet, Spring 36.6 104 98.08% 100.00%
5 logicaldoc [21] 2013 51494 61 31 Servlet, Spring 122 780 62.50% 100.00%
6 LMS [22] 33 14329 420 187 Servlet, Spring, Struts2 0.5 213 84.13% 100.00%
7 B2CWeb [23] 41 17434 481 343 Servlet, Spring, Struts2 0.8 155 82.96% 100.00%
8 newbee-mall [24] 89 13463 9.4k 2.5k Servlet, Spring 172 117 76.92% 100.00%
9 NewsSystem [25] 66 20065 19 8 Servlet, Spring, Struts2 158 93 76.92% 60.00%

10 openkm [26] 2968 88843 527 255 Servlet, Spring 207 421 98.05% 100.00%
11 RuoYi [27] 290 38320 3k 1k Servlet, Spring 2.79 310 75.28% 92.31%
12 showcase [28] 42 8937 5k 3.8k Servlet, Spring 1.4 695 78.71% 100.00%
13 petclinic [29] 24 29092 395 1.8k Servlet, Spring 1.75 337 75.00% 100.00%
14 WebApp [30] 75 28722 1.3k 610 Servlet, Spring 1.56 290 80.07% 100.00%
15 struts-examples [31] 170 13507 405 543 Servlet, Struts2 11.2 1022 98.33% 100.00%
16 Struts2-Vuln [32] 20 4569 170 38 Servlet, Struts2 0.3 176 99.43% 100.00%

Columns 2–7 are the details of benchmark properties. Columns 8–11 show the details of runtime information. The rest of the figures and tables of this
paper would use “ID” to represent each benchmark instead of benchmark names. Benchmarks struts-examples and Struts2-Vuln are two collections that
contain 41 and 16 micro-benchmarks, respectively.

Our experiments aims to answer the following research
questions:

RQ1 Can our approach automatically infer framework-
introduced semantics of web applications?

RQ2 How precise are the inferred specifications?
RQ3 How is the quality of generated specifications compared

to manually written ones?

B. RQ 1: Feasibility

a) AUTOWEB: AUTOWEB offers an automated and
user-friendly solution that minimizes the need for manual
setup throughout the workflow. Human involvement is solely
required during the initial phase, primarily to interact with the
deployed applications, which can be streamlined through using
tools like [35]. Then, AUTOWEB automates the following
steps leveraging information directly derived from the initial
actions. Compared to human learning, which involves static
analysis and framework knowledge, the cost is notably lower.
While resources like StackOverflow [36] and official documen-
tation facilitate rapid initiation, they often lack insights into
the correlation between framework usage and static analysis
semantics. Establishing these connections requires intricate,
labor-intensive manual intervention, making it a challenging
and time-consuming endeavor.

The applications in Table IV are used as the input of AU-
TOWEB to generate specifications. The runtime information
of AUTOWEB is detailed in Columns 8–11 in Table IV. The
size of execution log produced by each application using the
original configurations, is outlined in Column 8. Column 9
displays the number of mutated configuration sets generated
by AUTOWEB. Each mutation concerns one configuration for
one relation. Column 10 denotes the success rate of application
execution using these mutated configurations. Apart from
benchmarks 2 and 5, all other benchmarks achieved success
rates exceeding 75% during execution. Even in benchmarks
2 and 5, a significant number of successful runs amounted

TABLE V: Detailed results of inferred specifications.

Configurations
Number Entry Inject Call

ID All Reach.* Spec.* FN FP FN FP FN FP
1 19 15 9 1 0 0 0 0 0
2 80 60 17 0 0 0 0 1 0
3 6 6 4 0 0 0 0 0 0
4 6 6 2 0 0 0 0 0 0
5 18 9 9 0 0 0 0 0 0
6 8 7 6 0 0 0 0 0 0
7 7 4 4 0 0 0 0 0 0
8 19 14 8 0 0 0 0 0 0
9 9 9 3 0 0 0 0 2 0

10 67 30 5 0 0 0 0 0 0
11 59 27 12 0 0 1 0 0 0
12 29 28 12 0 0 0 0 0 0
13 33 31 10 0 0 0 0 0 0
14 34 19 7 0 0 0 0 0 0
15 29 16 8 0 0 0 0 0 0
16 3 3 2 0 0 0 0 0 0

Reach. denotes reachable configurations at runtime.
Spec. represents specifications inferred by AUTOWEB (Section III-C)

to 277 and 488, respectively. The final column in Table IV
presents the recall (TP/(TP + FN)), demonstrating that all
benchmarks, except benchmark 9 (to be discussed in IV-C),
achieved recall rates surpassing 90%. The extensibility of
AUTOWEB lies in two aspects, namely new frameworks and
new relation types. New frameworks are already supported
by AUTOWEB (discussed shortly), while certain components
need to be enhanced to support new relation types.

b) Specification: The benchmarks encompass a total of
152 configuration parameters: 60 for classes, 39 for methods,
and 53 for fields. Among these configuration parameters, 121
are specific to the three frameworks under manual investi-
gation, while the remaining parameters are associated with
other frameworks utilized within the applications, such as
Stripes [37]. Additional details regarding the count of distinct
configuration parameters in each benchmark can be found in
columns 2 to 4 of Table V.

The specifications derived from the 16 benchmarks en-

7



TABLE VI: Part of inferred entry-point (EP) specifications.

Line Class Method
EP1 @RestController @PostMapping
EP2 beans->bean[class] beans->bean[destroy-method]
EP3 - @Action
EP4 struts->package->action[class] struts->package->action[method]
EP5 web-app->filter->filter-class Filter.doFilter(...)
EP6 - @DefaultHandler

The “-” symbol represents any configuration.

compass 96 entry point types, 9 points-to types, and 17
indirect call types. These specifications involve configuration
parameters for 17 classes, 20 methods, 10 fields, as well
as 46 additional sub-types within the framework API. To
enhance understanding and application of these specifications,
we provide an excerpt of inferred entry point relations. Both
points-to and call relations exhibit similarities.

Table VI displays some of the results regarding entry point
types in the specifications. Each row indicates that when a
method and its associated class satisfy the specified configu-
ration parameters, the method becomes an entry point, and the
class becomes the entry class. EP 1, 3, and 6 correspond to
annotation configurations, while EP 2, 4, and 5 are associated
with XML configurations. In the case of EP6, the method
also needs to override the designated method. The results
shown are divided by frameworks: EP 1–2, EP 3–4, EP 5,
and EP 6 belong to frameworks Spring, Struts2, Servlet, and
Strips [37], respectively. It is worth mentioning that initially,
we did not consider Strips but AUTOWEB still inferred the
corresponding specification (EP 6), confirming our approach
can be generalized to other new frameworks.

Since specifications are generalized and not specific to any
application, they can be utilized by existing static analyzers to
analyze any web application built on the frameworks outlined
in the specifications. After that, static analyzers can understand
framework semantics to facilitate various analyses, such as call
graph construction [12], and information analysis [38].

Conclusion. To sum up, our proposed technique is feasible
in practice: AUTOWEB can automatically generate precise
framework specifications, saving heavy human effort. More-
over, AUTOWEB is readily applicable to other frameworks
(e.g., Stripes) and relation types, confirming the generality of
our approach.

C. RQ 2: Specification Accuracy

The specifications generated by AUTOWEB should exhibit
minimal or zero false positives to prevent any adverse impacts
when used directly in static analysis. To this end, we manually
verify the accuracy of all inferred specifications by examining
the source code, with a summary of the results provided in
Table V. During the verification process, we focus on the
following two issues:

• False Positives. Are there any incorrectly inferred rela-
tions that contradict framework semantics?

• False Negatives. Are there any correct relations that were
not inferred but were observed during runtime?
a) False Positives: Table V (Columns 6, 8, 10) reveals

no false positives in any of the benchmarks. This is due to

the specifications being inferred from runtime information,
which is subsequently verified by the actual execution of the
application. As a result, AUTOWEB effectively avoids false
positives, ensuring the correctness of the framework semantics
introduced in the static analysis.

b) False Negatives: There are only five false negatives
for all benchmarks. These false negatives are hidden be-
hind certain factors during runtime, preventing them from
being apparent. One factor is embedding the configuration
content directly in the code, rendering the configuration on
the code(annotations or XML files) ineffective. For exam-
ple, in the community project, removing the parameter
“@RequestMapping” does not take effect at runtime be-
cause the application has a default response function that pro-
duces the same result as the configuration parameter. Another
factor is the language feature. For example, in RuoYi, the
false negative for the field-inject relation is related to the
“@Value” annotation. This occurs because all fields annotated
with this configuration are Java primitive types, which always
have default values. Moreover, complex string configurations
lead to false negatives. In the NewsSystem, a false nega-
tive is caused by intricate string manipulation. Specifically,
the configuration <action name="AdminAction_*"
method="1"> utilizes the implicit configuration value “{1}”
to represent the method name, relying on the incoming URLs.
Another false negative arises from multi-layer references in
XML attributes, which are not yet supported.

Note that false negatives in one application may appear as
true positives in other applications. For instance, the Entry-
point relation @RequestMapping is FN in community ap-
pears as true positive in newbee-mall. More input projects
would bring more complete specifications, which will be
discussed in IV-D. The average false negative rate summarized
from all inferred specifications is 8.2%.

Conclusion. Upon analysis, we identified that the false
negatives in our inferred specifications were a consequence of
configurations outside the scope of our analysis. Importantly,
the inferred specifications exhibit no false positives, indicating
their direct applicability as framework knowledge for static
analysis tools.

D. RQ 3: Comparison with Existing Work

The state-of-the-art tool, JackEE [7], offers open-source
specifications across various web frameworks. JackEE is built
on top of Doop [8], which is a collection of various analyses
expressed in the form of Datalog [39] rules, and all the frame-
work specifications are written in Datalog rules. To assess
the efficacy of the specifications generated by AUTOWEB, we
converted them into Datalog rules, replacing all configuration
specifications of JackEE. Taking JackEE’s specifications as the
baseline, we evaluate specifications produced by AUTOWEB
as well as the default specifications from Doop.

a) Comparison Dimension: Framework knowledge helps
static analyses to better understand the application behaviors.
To evaluate the quality of specifications, we focus on reachable
application methods and call graph edges.
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Fig. 4: Reachability for different metrics.

b) Comparison Method: We choose JackEE (with its
manual specifications) as the baseline. Doop also provides
its own handwritten specifications, and we include them for
completeness. We considered 8 benchmarks from JackEE
(mentioned in IV-A) for evaluation. Among these benchmarks,
1 entails a prolonged setup duration, 2 encounter deploy-
ment problems, and 1 is not open-sourced. As a result, we
use 4 benchmarks to enrich the specifications generated by
AUTOWEB. Hence, we have two sets of specifications: (1)
AUTOWEB16 contains the specifications generated using 16
benchmarks in Table IV-A. (2) AUTOWEB20 denotes the
enriched specifications using 20 (16 + 4) benchmarks.

c) Result: Figure 4a and Figure 4b compare Doop,
AUTOWEB16, and AUTOWEB20 against JackEE on reachable
(application) methods and call graph edges, respectively. When
comparing AUTOWEB16 with JackEE, the ratios range from
83.14% to 121.73% on reachable methods, averaging 96.59%;
For call graph edges, the numbers vary from 89.18% to
111.48%, averaging 98.09%. Moreover, AUTOWEB16 signifi-
cantly outperformed Doop. On the other hand, AUTOWEB20

exhibited improvements over AUTOWEB16, particularly in
benchmarks such as shopizer and SpringBlog, where
previously missing configurations, absent in the initial 16
benchmarks, were later inferred. This underscores that using a
more extensive set of inputs can lead to richer specifications,
as discussed in section IV-C0b. Furthermore, our specifications

include correct configuration parameters that may have been
overlooked manually. For example, we identified annotations
like @PostMapping and @ExceptionHandler as entry-
point relations, while JackEE did not recognize them. This
highlights the presence of unsystematic and incomplete issues
of manually configured specifications.

Conclusion. Concerning the quality of constructed call
graphs, the specifications inferred by AUTOWEB are com-
parable with those manual ones in JackEE. Furthermore,
our approach excels at identifying overlooked configuration
parameters during manual writing.

V. RELATED WORK

The related work encompasses two main areas: modeling
framework behaviors, and automatic summarizing of program
semantics.

a) Modeling Framework Behaviors: As mentioned in
section I, previous works modified each analysis engine with
human knowledge on-demand, which suffers from limited
reusability. Some studies attempted to develop reusable models
for specific frameworks to address this limitation, which
still rely on human knowledge. ANTaint [9] needs manually
modeled core features of Spring like bean injection and AOP.
The Oracle team [40] manually wrote rules to identify entry
points only for Java EE Servlet applications. CGNCG [41],
[42], F4F [6], [43], and JackEE [7] all need human effort to
obtain knowledge of the framework and static analysis. Static
Analysis Refining Language (SARL) [44] can also obtain
framework-introduced relations via iterative software analysis.
However, the analyzer also needs to point out and add the
missing framework knowledge. Unlike AUTOWEB, all these
approaches rely on the knowledge of frameworks and static
analysis, and require extra manual effort for new frameworks.

b) Automatic Summarizing Program Semantics: Re-
search on exploiting automatic approaches to summarizing
framework library specifications used in static analysis [45],
[46], [47] became more popular. These approaches mined
information flow specifications with additional running in-
formation over libraries, rather than writing them by hand.
However, the purpose of these approaches is to summarize the
framework library APIs’ semantics, especially for Android, not
to deal with complex but frequently used configurations (e.g.,
XML files). Therefore, these approaches do not apply to web
applications that mostly use non-code configurations.

VI. CONCLUSION

Web applications heavily rely on web frameworks, making
it imperative to precisely model framework semantics for static
analysis. In this paper, we proposed the first automated method
to produce specifications that encode general framework se-
mantics. To that end, we identify the minimal necessary and
sufficient set for a framework-related relation by mutating
configurations. Experimental results on three mainstream Java
frameworks demonstrate that our technique is comparable
to existing state-of-the-art manual approaches, obtaining a
marginal 8.2% false negatives with no false positives.
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